4.2 Article

A coupled level set and volume-of-fluid simulation for heat transfer of the double droplet impact on a spherical liquid film

期刊

NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS
卷 71, 期 4, 页码 359-371

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10407790.2017.1293960

关键词

-

资金

  1. National Natural Science Foundation of China [51506026]

向作者/读者索取更多资源

A coupled level set and volume-of-fluid method is applied to investigate the double droplet impact on a spherical liquid film. The method focuses on the analysis of surface curvature, droplet diameter, impact velocity, double droplets vertical spacing, the thickness of the liquid film of two liquid droplets after the impact on a spherical liquid film, and the influence of flow and heat transfer characteristics. The results indicate that the average wall heat flux density of the double liquid droplet impact on a spherical liquid film is greater than that of a flat liquid film. Average wall heat transfer coefficient increases with the increase in the liquid film's spherical curvature. When the liquid film thickness is smaller, the average wall heat flux density of the liquid film is significantly reduced by the secondary droplets generated from the liquid film. When the liquid film thickness is larger, the influence of liquid film thickness on the average wall heat flux density gradually decreases. The average wall heat flux density increases with the increase in impact velocity and the droplet diameter; it also decreases with the increase in double droplets vertical spacing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据