4.8 Article

In Vivo Magnetic Recording of Neuronal Activity

期刊

NEURON
卷 95, 期 6, 页码 1283-+

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2017.08.012

关键词

-

资金

  1. EU Project Magnetrodes [600730]
  2. Magsondes project, RTRA-Triangle de La Physique [2012-054T]
  3. French RENATECH network
  4. FCT [EXCL/CTM-NAN/0441/2012]
  5. IN Associated Laboratory
  6. DFG [FOR 1847, SPP 1665, FR2557/5-1-CORNET]
  7. EU [HEALTH-F2-2008-200728, FP7-604102-HBP]
  8. NIH (HCP WU-Minn Consortium, NIH grant) [1U54MH091657]
  9. LOEWE program (NeFF)

向作者/读者索取更多资源

Neuronal activity generates ionic flows and thereby both magnetic fields and electric potential differences, i.e., voltages. Voltage measurements are widely used but suffer from isolating and smearing properties of tissue between source and sensor, are blind to ionic flow direction, and reflect the difference between two electrodes, complicating interpretation. Magnetic field measurements could overcome these limitations but have been essentially limited to magnetoencephalography (MEG), using centimeter-sized, helium-cooled extracranial sensors. Here, we report on in vivo magnetic recordings of neuronal activity from visual cortex of cats with magnetrodes, specially developed needle-shaped probes carrying micron-sized, non-cooled magnetic sensors based on spin electronics. Event-related magnetic fields inside the neuropil were on the order of several nanoteslas, informing MEG source models and efforts for magnetic field measurements through MRI. Though the signal-to-noise ratio is still inferior to electrophysiology, this proof of concept demonstrates the potential to exploit the fundamental advantages of magnetophysiology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据