4.7 Review

MR elastography of the brain and its application in neurological diseases

期刊

NEUROIMAGE
卷 187, 期 -, 页码 176-183

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2017.10.008

关键词

-

资金

  1. National Institutes of Health [R37-EB001981]

向作者/读者索取更多资源

Magnetic resonance elastography (MRE) is an imaging technique for noninvasively and quantitatively assessing tissue stiffness, akin to palpation. MRE is further able assess the mechanical properties of tissues that cannot be reached by hand including the brain. The technique is a three-step process beginning with the introduction of shear waves into the tissue of interest by applying an external vibration. Next, the resulting motion is imaged using a phase-contrast MR pulse sequence with motion encoding gradients that are synchronized to the vibration. Finally, the measured displacement images are mathematically inverted to compute a map of the estimated stiffness. In the brain, the technique has demonstrated strong test-retest repeatability with typical errors of 1% for measuring global stiffness, 2% for measuring stiffness in the lobes of the brain, and 3-7% for measuring stiffness in subcortical gray matter. In healthy volunteers, multiple studies have confirmed that stiffness decreases with age, while more recent studies have demonstrated a strong relationship between viscoelasticity and behavioral performance. Furthermore, several studies have demonstrated the sensitivity of brain stiffness to neurodegeneration, as stiffness has been shown to decrease in multiple sclerosis and in several forms of dementia. Moreover, the spatial pattern of stiffness changes varies among these different classes of dementia. Finally, MRE is a promising tool for the preoperative assessment of intracranial tumors, as it can measure both tumor consistency and adherence to surrounding tissues. These factors are important predictors of surgical difficulty. In brief, MRE demonstrates potential value in a number of neurological diseases. However, significant opportunity remains to further refine the technique and better understand the underlying physiology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Neurosciences

Solving large-scale MEG/EEG source localisation and functional connectivity problems simultaneously using state-space models

Jose Sanchez-Bornot, Roberto C. Sotero, J. A. Scott Kelso, Ozguer Simsek, Damien Coyle

Summary: This study proposes a multi-penalized state-space model for analyzing unobserved dynamics, using a data-driven regularization method. Novel algorithms are developed to solve the model, and a cross-validation method is introduced to evaluate regularization parameters. The effectiveness of this method is validated through simulations and real data analysis, enabling a more accurate exploration of cognitive brain functions.

NEUROIMAGE (2024)