4.5 Article

Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells

期刊

NEUROCHEMISTRY INTERNATIONAL
卷 108, 期 -, 页码 7-14

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuint.2017.01.017

关键词

Nickel oxide nanoparticles; Neurotoxicity; Genotoxicity; Oxidative stress; Apoptosis

资金

  1. Research Fund of Istanbul University [37785]

向作者/读者索取更多资源

Nickel oxide nanoparticles (NiO-NPs) are used in many industrial sectors including printing inks, ceramics and catalysts, and electrical and electronics industry because of their magnetic and optical properties. However, there has been still a serious lack of information about their toxicity at the cellular and molecular levels on nervous system. For that, we aimed to investigate the in vitro toxic potentials of NiO-NPs in neuronal (SH-SY5Y) cells. The particle characterisation, cellular uptake and morphological changes were determined using Transmission Electron Microscopy, dynamic light scattering and Inductively Coupled Plasma-Mass Spectrometry. Then, the cytotoxicity was evaluated by MTT and neutral red uptake assays, the genotoxicity by comet assay, the oxidative potentials by the determination of malondialdehyde, 8-hydroxy deoxyguanosine, protein carbonyl, and glutathione levels with Enzyme-Linked Immune Sorbent Assays, and the apoptotic potentials by Annexin V-FITC apoptosis detection assay with propidium iodide. According to the results, it was observed that NiO-NPs (15.0 nm +/- 4.2 -38.1 nm); (i) were taken up by the cells in concentration dependent manner, (ii) caused 50% inhibition in cell viability at >= 229.34 mu g/mL, (iii) induced some morphological changes, (iv) induced dose dependent DNA damage (3.2-11.0 fold) and apoptosis (80-99%), (v) significantly induced oxidative damage. In conclusion, our results support the hypothesis that NiO-NPs affect human health especially neuronal system negatively and should raise the concern about the safety associated with their applications in consumer products. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据