4.8 Article

Dense monolayer films of atomically precise graphene nanoribbons on metallic substrates enabled by direct contact transfer of molecular precursors

期刊

NANOSCALE
卷 9, 期 47, 页码 18835-18844

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr06027k

关键词

-

资金

  1. Office of Naval Research (ONR) [N00014-16-1-2899]
  2. National Science Foundation (NSF) [CHE-1455330]
  3. U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]

向作者/读者索取更多资源

Atomically precise graphene nanoribbons (GNRs) of two types, chevron GNRs and N = 7 straight armchair GNRs (7-AGNRs), have been synthesized through a direct contact transfer (DCT) of molecular precursors on Au(111) and gradual annealing. This method provides an alternative to the conventional approach for the deposition of molecules on surfaces by sublimation and simplifies preparation of dense monolayer films of GNRs. The DCT method allows deposition of molecules on a surface in their original state and then studying their gradual transformation to polymers to GNRs by scanning tunneling microscopy (STM) upon annealing. We performed STM characterization of the precursors of chevron GNRs and 7-AGNRs, and demonstrate that the assemblies of the intermediates of the GNR synthesis are stabilized by pi-pi interactions. This conclusion was supported by the density functional theory calculations. The resulting monolayer films of GNRs have sufficient coverage and density of nanoribbons for ex situ characterization by spectroscopic methods, such as Raman spectroscopy, and may prove useful for the future GNR device studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Materials Science, Multidisciplinary

What happens when transition metal trichalcogenides are interfaced with gold?

Archit Dhingra, Dmitri E. Nikonov, Alexey Lipatov, Alexander Sinitskii, Peter A. Dowben

Summary: Transition metal trichalcogenides (TMTs) are 2D materials with potential applications in low-dimensional optical and electronic devices. However, the performance of 2D devices based on TMTs has been limited by contact-related issues. In this review, the interfacial interactions between gold and various TMTs were investigated to find solutions to these problems.

JOURNAL OF MATERIALS RESEARCH (2023)

Article Chemistry, Multidisciplinary

Simple Visualization of Universal Ferroelastic Domain Walls in Lead Halide Perovskites

Bo Zhang, Shuo Sun, Yinglu Jia, Jun Dai, Dhanusha T. N. Rathnayake, Xi Huang, Jade Casasent, Gopi Adhikari, Temban Acha Billy, Yongfeng Lu, Xiao Cheng Zeng, Yinsheng Guo

Summary: This study directly visualizes ferroelastic twin domains in lead halide perovskites and demonstrates their role as internal reflectors for energy transport. The findings show that these domain walls have low energies and can easily switch between different orientations, making them suitable for optical guiding of internal photoexcitations.

ADVANCED MATERIALS (2023)

Article Physics, Condensed Matter

Chiral photocurrent in a Quasi-1D TiS3 (001) phototransistor

Simeon J. Gilbert, Mingxing Li, Jia-Shiang Chen, Hemian Yi, Alexey Lipatov, Jose Avila, Alexander Sinitskii, Maria C. Asensio, Peter A. Dowben, Andrew J. Yost

Summary: The presence of in-plane chiral effects and spin-orbit coupling in a TiS3(001) field-effect phototransistor is confirmed through changes in the photocurrent caused by left versus right circularly polarized light. NanoARPES measurements indicate that the direction of the photocurrent is protected by strong spin-orbit coupling and the anisotropy of the band structure. Dark electronic transport measurements show that TiS3 is n-type with an electron mobility ranging from 1-6 cm(2)V(-1)s(-1). I-V measurements under laser illumination demonstrate that the photocurrent exhibits bias directionality dependence similar to bipolar spin diode behavior. The presence of spin-orbit coupling in TiS3, a material without heavy elements, is attributed to the loss of inversion symmetry at the TiS3(001) surface.

JOURNAL OF PHYSICS-CONDENSED MATTER (2023)

Article Chemistry, Multidisciplinary

High-yield fabrication of electromechanical devices based on suspended Ti3C2Tx MXene monolayers

Saman Bagheri, Jehad Abourahma, Haidong Lu, Nataliia S. Vorobeva, Shengyuan Luo, Alexei Gruverman, Alexander Sinitskii

Summary: This paper demonstrates a high-yield fabrication of electromechanical devices based on individual suspended monolayer MXene flakes. The devices show stable electromechanical responses and high electrical conductivity.

NANOSCALE (2023)

Article Chemistry, Multidisciplinary

Photocatalytic Oxidation of NO2 on TiO2: Evidence of a New Source of N2O5

Biwu Chu, Yuan Liu, Hao Li, Yongcheng Jia, Jun Liu, Qing Cao, Tianzeng Chen, Peng Zhang, Qingxin Ma, Xiao Cheng Zeng, Joseph S. Francisco, Hong He

Summary: Using a flow tube reactor, it was discovered that N2O5 can be released from the TiO2 surface during the photocatalytic oxidation of NO2, which provides a previously unreported source of N2O5. The release rate of N2O5 from TiO2 depends on various factors including the initial NO2 concentration, relative humidity, O-2/N-2 ratio, and irradiation intensity. Experimental and theoretical studies show that this release is due to the reaction of NO2 with surface hydroxyl groups and electron holes on TiO2, followed by its combination with another NO2 molecule to form N2O5.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Physical

COF-C4N Nanosheets with uniformly anchored single metal sites for electrocatalytic OER: From theoretical screening to target synthesis

Rui Zhang, Wenshan Liu, Feng-Ming Zhang, Zhao-Di Yang, Guiling Zhang, Xiao Cheng Zeng

Summary: COF-C4N was found to be an effective oxygen evolution reaction (OER) electrocatalyst with low overpotential, and it has ideal N-edge cavities suitable for anchoring transition metal (TM) sites, thereby achieving higher OER activity as single atom catalysts (SACs). Two descriptors for characterizing the OER activities were proposed based on density-functional theory calculations, and Co-COF-C4N and Ni-COF-C4N were theoretically suggested to be highly active and low-cost OER SACs for target synthesis.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Chemistry, Physical

Green Diamond: A Superhard Boron Carbonitride with Bandgap in Green-Light Region and Anisotropic High Carrier Mobilities

Jiaqi Lin, Jiaxin Jiang, Jiaqi Zhang, Hongyan Guo, Xiao Cheng Zeng, Zhiwen Zhuo, Ning Lu

Summary: A new diamond-like boron carbonitride material (BC6N) with excellent mechanical, electronic, and optical properties has been discovered. It can be synthesized easily and has potential applications as a superhard and high-temperature material, as well as in the semiconductor and optical devices fields.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2023)

Article Chemistry, Physical

Resolving Interface Barrier Deviation from the Schottky-Mott Rule: A Mitigation Strategy via Engineering MoS2-Metal van der Waals Contact

Zhongjun Li, Yahui Zheng, Guojun Li, Hanxi Wang, Weiduo Zhu, Haidi Wang, Zhao Chen, Yupeng Yuan, Xiao Cheng Zeng, Yucheng Wu

Summary: The deviation of the Schottky barrier (SB) in the ultraclean van der Waals contact between 2D MoS2 and 3D In from the Schottky-Mott limit (SML) is investigated. The deviation is found to be attributed to the combined effects of interface potential difference (?V) and Fermi-level shift (?E-F). By coating a thin film of Au, Sc, or Ti on the back side of In, the deviation and the sum of ?V and ?E-F can be reduced. Particularly, the SB is significantly reduced to 0.12 eV in the Ti coating case. This interface engineering can be applied to regulate the SB between a 2D semiconductor and a 3D alloy.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2023)

Article Instruments & Instrumentation

Ultrafast electron diffraction instrument for gas and condensed matter samples

Yibo Wang, Sajib Kumar Saha, Tianlin Li, Yanwei Xiong, Kyle Wilkin, Anil Adhikari, Michael Loes, Jehad Abourahma, Xia Hong, Shireen Adenwalla, Alexander Sinitskii, Martin Centurion

Summary: We modified a gas phase ultrafast electron diffraction (UED) instrument to conduct experiments on both gas and condensed matter targets. The modified instrument demonstrated sub-picosecond time-resolved experiments with solid state samples. By using a hybrid DC-RF acceleration structure, femtosecond electron pulses are delivered to the target synchronized with femtosecond laser pulses. The new system allows for transmission UED on thin solid samples, as well as cooling samples to cryogenic temperatures and carrying out time-resolved measurements. The cooling capability was tested on 1T-TaS2 for diffraction patterns of temperature dependent charge density waves, and the time-resolved capability was verified by capturing dynamics in photoexcited single-crystal gold.

REVIEW OF SCIENTIFIC INSTRUMENTS (2023)

Article Nanoscience & Nanotechnology

Synergistic Effect of TiS3 and Ti3C2T x MXene for Temperature-Tunable p-/n-Type Gas Sensing

Michael J. Loes, Saman Bagheri, Nataliia S. Vorobeva, Jehad Abourahma, Alexander Sinitskii

Summary: This study proposes a highly tunable gas sensor strategy by combining MXene with a sacrificial material that can be controlled oxidized to form oxide nanoparticles, altering sensing response. The controlled annealing process retains the integrity of MXene sheets while converting the sacrificial material to a metal oxide, fine-tuning the sensor properties. The approach is demonstrated using Ti3C2Tx MXene mixed with TiS3, showing improved sensor response to ethanol. The addition of TiS3 allows for the preservation of MXene as the sensor material and the tuning of sensor properties through annealing for specific analytes or applications.

ACS APPLIED NANO MATERIALS (2023)

Article Engineering, Electrical & Electronic

Enhanced Photoresponse in Few-Layer SnS2 Field-Effect Transistors Modified with Methylammonium Lead Iodide Perovskite

Michael J. Loes, Alexey Lipatov, Nataliia S. Vorobeva, Haidong Lu, Jehad Abourahma, Dmitry S. Muratov, Alexei Gruverman, Alexander Sinitskii

Summary: In this study, the decoration of two-dimensional (2D) materials with MAPbI3 nanoparticles is shown to enhance their visible light photoresponse. The approach was demonstrated using 2D SnS2, which has limited absorption in the visible range. Field-effect transistors based on the decorated SnS2 showed increased photoresponse throughout the visible spectrum. The decorated devices exhibited stable and reproducible photoswitching behavior.

ACS APPLIED ELECTRONIC MATERIALS (2023)

Article Chemistry, Multidisciplinary

Sub-5 nm Contacts and Induced p-n Junction Formation in Individual Atomically Precise Graphene Nanoribbons

Pin-Chiao Huang, Hongye Sun, Mamun Sarker, Christopher M. Caroff, Gregory S. Girolami, Alexander Sinitskii, Joseph W. Lyding

Summary: This paper demonstrates the fabrication of nanometer-scale metal contacts on individual graphene nanoribbons (GNRs) and the use of these contacts to control the electronic character of the GNRs. Using a low-voltage direct-write STM-based process, sub-5 nm metallic hafnium diboride (HfB2) contacts are patterned directly on top of single GNRs in an ultrahigh-vacuum scanning tunneling microscope (UHV-STM), with all the fabrication performed on a technologically relevant semiconductor silicon substrate. Scanning tunneling spectroscopy (STS) data verify the expected metallic and semiconducting character of the contacts and GNR, and also show induced band bending and p-n junction formation in the GNR due to the metal-GNR work function difference. Contact engineering with different work function metals eliminates the need for complex chemical doping to create GNRs with different characteristics. This paper demonstrates the successful fabrication of precise metal contacts and local p-n junction formation on single GNRs.

ACS NANO (2023)

Article Multidisciplinary Sciences

Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field

Bo Lin, Jian Jiang, Xiao Cheng Zeng, Lei Li

Summary: Understanding the phase behavior of nanoconfined water films is important in various fields. This study developed a machine-learning force field to determine the phase diagram of monolayer water/ice in nanoconfinement. Two new high-density ices were discovered, with unique hydrogen-bonding networks. The study also identified the stable region for the lowest-density monolayer ice at negative pressures.

NATURE COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

Unraveling Piezoelectricity of Two-Dimensional Ferroelectric Metal 1T′′-MoS2

Haidong Lu, Hugo Aramberri, Alexey Lipatov, Roger Proksch, Alexander Sinitskii, Jorge Iniguez, Alexei Gruverman

Summary: This study investigates the longitudinal piezoelectric coefficient in 2D ferroelectric 1T ''-MoS2 and finds that it exhibits negative piezoelectricity. The experimental results are supported by theoretical calculations.

ACS MATERIALS LETTERS (2023)

Article Materials Science, Multidisciplinary

Improving environmental stability of MXene films by intercalation of N-methylformamide

Akari Seko, Shun Sakaida, Masashi Koyanagi, Yasuaki Okada, Takeshi Torita, Mark Anayee, Mikhail Shekhirev, Yury Gogotsi

Summary: MXenes are two-dimensional nanomaterials with various properties and potential applications in electronics, photonics, energy storage, etc. Their hydrophilicity allows them to absorb water from the environment, resulting in swelling and degradation of the assembled films. In this study, we demonstrate that intercalation of N-methylformamide (NMF) improves the stability of MXene films at high temperatures and humidity through host-guest hydrogen bonding. NMF interacts strongly with the MXene surface and occupies the interlayer spacing, reducing water intercalation and maintaining high electrical conductivity in hot and humid conditions.

MRS COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

Exploring the degradation of silver nanowire networks under thermal stress by coupling in situ X-ray diffraction and electrical resistance measurements

Laetitia Bardet, Herve Roussel, Stefano Saroglia, Masoud Akbari, David Munoz-Rojas, Carmen Jimenez, Aurore Denneulin, Daniel Bellet

Summary: The thermal instability of silver nanowires leads to increased electrical resistance in AgNW networks. Understanding the relationship between structural and electrical properties of AgNW networks is crucial for their integration as transparent electrodes in flexible optoelectronics. In situ X-ray diffraction measurements were used to study the crystallographic evolution of Ag-specific Bragg peaks during thermal ramping, revealing differences in thermal and structural transitions between bare and SnO2-coated AgNW networks.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Recording physiological and pathological cortical activity and exogenous electric fields using graphene microtransistor arrays in vitro

Nathalia Cancino-Fuentes, Arnau Manasanch, Joana Covelo, Alex Suarez-Perez, Enrique Fernandez, Stratis Matsoukis, Christoph Guger, Xavi Illa, Anton Guimera-Brunet, Maria V. Sanchez-Vives

Summary: This study provides a comprehensive characterization of graphene-based solution-gated field-effect transistors (gSGFETs) for brain recordings, highlighting their potential clinical applications.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Metal oxide-embedded carbon-based materials for polymer solar cells and X-ray detectors

Sikandar Aftab, Hailiang Liu, Dhanasekaran Vikraman, Sajjad Hussain, Jungwon Kang, Abdullah A. Al-Kahtani

Summary: This study examines the effects of hybrid nanoparticles made of NiO@rGO and NiO@CNT on the active layers of polymer solar cells and X-ray photodetectors. The findings show that these hybrid nanoparticles can enhance the charge carrier capacities and exciton dissociation properties of the active layers. Among the tested configurations, the NiO@CNT device demonstrates superior performance in converting sunlight into electricity, and achieves the best sensitivity for X-ray detection.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury

Hyo Jung Shin, Seung Gyu Choi, Fengrui Qu, Min-Hee Yi, Choong-Hyun Lee, Sang Ryong Kim, Hyeong-Geug Kim, Jaewon Beom, Yoonyoung Yi, Do Kyung Kim, Eun-Hye Joe, Hee-Jung Song, Yonghyun Kim, Dong Woon Kim

Summary: This study investigates the role of SOX9 in reactive astrocytes following ischemic brain damage using a PLGA nanoparticle plasmid delivery system. The results demonstrate that PLGA nanoparticles can reduce ischemia-induced neurological deficits and infarct volume, providing a potential opportunity for stroke treatment.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Spontaneous unbinding transition of nanoparticles adsorbing onto biomembranes: interplay of electrostatics and crowding

Anurag Chaudhury, Koushik Debnath, Nikhil R. Jana, Jaydeep K. Basu

Summary: The study investigates the interaction between nanoparticles and cell membranes, and identifies key parameters, including charge, crowding, and membrane fluidity, that determine the adsorbed concentration and unbinding transition of nanoparticles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab

Sina Sadeghi, Fazel Bateni, Taekhoon Kim, Dae Yong Son, Jeffrey A. Bennett, Negin Orouji, Venkat S. Punati, Christine Stark, Teagan D. Cerra, Rami Awad, Fernando Delgado-Licona, Jinge Xu, Nikolai Mukhin, Hannah Dickerson, Kristofer G. Reyes, Milad Abolhasani

Summary: In this study, an autonomous approach for the development of lead-free metal halide perovskite nanocrystals is presented, which integrates a modular microfluidic platform with machine learning-assisted synthesis modeling. This approach enables rapid and optimized synthesis of copper-based lead-free nanocrystals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

In situ growth of a redox-active metal-organic framework on electrospun carbon nanofibers as a free-standing electrode for flexible energy storage devices

Zahir Abbas, Nissar Hussain, Surender Kumar, Shaikh M. Mobin

Summary: The rational construction of free-standing and flexible electrodes for electrochemical energy storage devices is an emerging research focus. In this study, a redox-active metal-organic framework (MOF) was prepared on carbon nanofibers using an in situ approach, resulting in a flexible electrode with high redox-active behavior and unique properties such as high flexibility and lightweight. The prepared electrode showed excellent cyclic retention and rate capability in supercapacitor applications. Additionally, it could be used as a freestanding electrode in flexible devices at different bending angles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

A NIR-driven green affording-oxygen microrobot for targeted photodynamic therapy of tumors

Lishan Zhang, Xiaoting Zhang, Hui Ran, Ze Chen, Yicheng Ye, Jiamiao Jiang, Ziwei Hu, Miral Azechi, Fei Peng, Hao Tian, Zhili Xu, Yingfeng Tu

Summary: Photodynamic therapy (PDT) is a promising local treatment modality in cancer therapy, but its therapeutic efficacy is restricted by ineffective delivery of photosensitizers and tumor hypoxia. In this study, a phototactic Chlorella-based near-infrared (NIR) driven green affording-oxygen microrobot system was developed for enhanced PDT. The system exhibited desirable phototaxis and continuous oxygen generation, leading to the inhibition of tumor growth in mice. This study demonstrates the potential of using a light-driven green affording-oxygen microrobot to enhance photodynamic therapy.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Novel hollow MoS2@C@Cu2S heterostructures for high zinc storage performance

Yujin Li, Jing Xu, Xinqi Luo, Futing Wang, Zhong Dong, Ke-Jing Huang, Chengjie Hu, Mengyi Hou, Ren Cai

Summary: In this study, hollow heterostructured materials were constructed using an innovative template-engaged method as cathodes for zinc-ion batteries. The materials exhibited fast Zn2+ transport channels, improved electrical conductivity, and controlled volume expansion during cycling. The designed structure allowed for an admirable reversible capacity and high coulombic efficiency.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Mechanistic elucidation of the catalytic activity of silver nanoclusters: exploring the predominant role of electrostatic surface

Paritosh Mahato, Shashi Shekhar, Rahul Yadav, Saptarshi Mukherjee

Summary: This study comprehensively elucidates the role of the core and electrostatic surface of metal nanoclusters in catalytic reduction reactions. The electrostatic surface dramatically modulates the reactivity of metal nanoclusters.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Facile green synthesis of wasted hop-based zinc oxide nanozymes as peroxidase-like catalysts for colorimetric analysis

Pei Liu, Mengdi Liang, Zhengwei Liu, Haiyu Long, Han Cheng, Jiahe Su, Zhongbiao Tan, Xuewen He, Min Sun, Xiangqian Li, Shuai He

Summary: This study demonstrates a simple and environmentally-friendly method for the synthesis of zinc oxide nanozymes (ZnO NZs) using wasted hop extract (WHE). The WHE-ZnO NZs exhibit exceptional peroxidase-like activity and serve as effective catalysts for the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). In addition, a straightforward colorimetric technique for detecting both H2O2 and glucose was developed using the WHE-ZnO NZs as peroxidase-like catalysts.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Impact of channel nanostructures of porous carbon particles on their catalytic performance

Hyunkyu Oh, Young Jun Lee, Eun Ji Kim, Jinseok Park, Hee-Eun Kim, Hyunsoo Lee, Hyunjoo Lee, Bumjoon J. Kim

Summary: Mesoporous carbon particles have unique structural properties that make them suitable as support materials for catalytic applications. This study investigates the impact of channel nanostructures on the catalytic activity of porous carbon particles (PCPs) by fabricating PCPs with controlled channel exposure on the carbon surface. The results show that PCPs with highly open channel nanostructures exhibit significantly higher catalytic activity compared to those with closed channel nanostructures.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Fabrication of a tough, long-lasting adhesive hydrogel patch via the synergy of interfacial entanglement and adhesion group densification

Yunjie Lu, Zhaohui Li, Zewei Li, Shihao Zhou, Ning Zhang, Jianming Zhang, Lu Zong

Summary: A tough, long-lasting adhesive and highly conductive nanocomposite hydrogel (PACPH) was fabricated via the synergy of interfacial entanglement and adhesion group densification. PACPH possesses excellent mechanical properties, interfacial adhesion strength, and conductivity, making it a promising material for long-term monitoring of human activities and electrocardiogram signals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Strongly coupled plasmonic metal nanoparticles with reversible pH-responsiveness and highly reproducible SERS in solution

Zichao Wei, Audrey Vandergriff, Chung-Hao Liu, Maham Liaqat, Mu-Ping Nieh, Yu Lei, Jie He

Summary: We have developed a simple method to prepare polymer-grafted plasmonic metal nanoparticles with pH-responsive surface-enhanced Raman scattering. By using pH-responsive polymers as ligands, the aggregation of nanoparticles can be controlled, leading to enhanced SERS. The pH-responsive polymer-grafted nanoparticles show high reproducibility and sensitivity in solution, providing a novel approach for SERS without the need for sample pre-concentration.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Unlocking the full potential of citric acid-synthesized carbon dots as a supercapacitor electrode material via surface functionalization

Melis Ozge Alas Colak, Ahmet Gungor, Merve Buldu Akturk, Emre Erdem, Rukan Genc

Summary: This research investigates the effect of functionalizing carbon dots with hydroxyl polymers on their performance as electrode materials in a supercapacitor. The results show that the functionalized carbon dots exhibit excellent electrochemical performance and improved stability.

NANOSCALE (2024)