4.8 Article

Reversible strain alignment and reshuffling of nanoplatelet stacks confined in a lamellar block copolymer matrix

期刊

NANOSCALE
卷 9, 期 44, 页码 17371-17377

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr05723g

关键词

-

向作者/读者索取更多资源

We designed a nanocomposite consisting of CdSe nanoplatelets dispersed in the form of short stacks in the polybutadiene domains of a polystyrene-polybutadiene-polystyrene (SBS) thermoplastic elastomer matrix. Under strain, the material displays reversible, macroscopic anisotropic properties, e.g. the fluorescence signal. We present here a structural study of the composite under stretching, by in situ high-resolution X-ray scattering using synchrotron radiation. Modelling the scattering signal allows us to monitor the evolution of both the matrix and the platelets under strain. In particular, we show that the strain reshuffles the platelet stacks, which tilt their long axis from parallel to the plane of the microstructure lamellae at rest to perpendicular to this plane at high strain, at the same time breaking into smaller pieces, more easily accommodated in the soft butadiene domains. This reshuffling is fully reversed after strain relaxation. Moreover, it can be prevented by adding free oleic acid, which reinforces the interactions between the platelets in the stacks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据