4.5 Article

Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination

期刊

MOLECULAR BIOLOGY REPORTS
卷 44, 期 3, 页码 261-272

出版社

SPRINGER
DOI: 10.1007/s11033-017-4104-5

关键词

Alfalfa; Salt stress; Drought stress; Seed germination; Proteomics

资金

  1. National Natural Science Foundation of China [31472139]
  2. National Science and Technology Supporting Project of China [2011BAD17B01-01-3]
  3. Basic Scientific Research Fund of IAS-CAAS [2014ywf-zd-2]

向作者/读者索取更多资源

Salinity and drought are two major environmental factors that limit the growth and yield of many forage crops in semi-arid and arid regions. Alfalfa (Medicago sativa L.) is one of the most important forage crops in many countries. We aim to investigate the molecular mechanisms of alfalfa in response to salt and drought stresses in this study. Physiological and proteomic analyses were applied to examine the Zhongmu NO.3 alfalfa seed germination stage with 200 mM NaCl and 180 g center dot L-1 polyethylene glycol (PEG) treatments. The germination ability of the seed and the accumulation of osmotic solutes were quite different between the NaCl and PEG treatments. More than 800 protein spots were detected by proteomics technology on two-dimensional electrophoresis (2-DE) gels. The abundance of twenty-eight proteins were decreased or increased after salt and drought stress. Seventeen of these proteins were identified and classified into six functional categories through mass spectrometry (MS). The six groups involved in salt- and PEG-mediated stress included defense response, energy metabolism, protein synthesis and degradation, oxidative stress, carbohydrate metabolism-associated proteins, and unknown proteins. We discovered that some proteins related to carbohydrate metabolism and energy production increased in abundance under salt- and PEG-mediated drought stress. This demonstrates a common mechanism of energy consumption during abiotic stresses. Further study of these proteins with unknown function will provide insights into the molecular mechanisms of abiotic stress and the discovery of new candidate markers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据