4.6 Article

Heterogeneous Creep Deformations and Correlation to Microstructures in Fe-30Cr-3Al Alloys Strengthened by an Fe2Nb Laves Phase

出版社

SPRINGER
DOI: 10.1007/s11661-017-4274-8

关键词

-

资金

  1. Crosscutting Research Program, Office of Fossil Energy, U.S. Department of Energy

向作者/读者索取更多资源

A new Fe-Cr-Al (FCA) alloy system has been developed with good oxidation resistance and creep strength at high temperature. The alloy system is a candidate for use in future fossil-fueled power plants. The creep strength of these alloys at 973 K (700 A degrees C) was found to be comparable with traditional 9 pct Cr ferritic-martensitic steels. A few FCA alloys with general composition of Fe-30Cr-3Al-.2Si-xNb (x = 0, 1, or 2) with a ferrite matrix and Fe2Nb-type Laves precipitates were prepared. The detailed microstructural characterization of samples, before and after creep rupture testing, indicated precipitation of the Laves phase within the matrix, Laves phase at the grain boundaries, and a 0.5 to 1.5 mu m wide precipitate-free zone (PFZ) parallel to all the grain boundaries. In these alloys, the areal fraction of grain boundary Laves phase and the width of the PFZ controlled the cavitation nucleation and eventual grain boundary ductile failure. A phenomenological model was used to compare the creep strain rates controlled by the effects of the particles on the dislocations within the grain and at grain boundaries. (The research sponsored by US-DOE, Office of Fossil Energy, the Crosscutting Research Program).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据