4.7 Article

Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions

期刊

METABOLIC ENGINEERING
卷 39, 期 -, 页码 247-256

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2016.12.008

关键词

C-13-MFA; Channeling; Free metabolites; Promoter; Reflux; Tryptophan; Violacein

资金

  1. National Science Foundation [MCB 1616619, DBI1356669, MCB 1448657]
  2. US Department of Energy, Office of Science [DE-AC02-05CH11231]
  3. US Department of Energy, Office of Biological and Environmental Research [DE-AC02-05CH11231]
  4. NNF Center for Biosustainability [Synthetic Biology Tools for Yeast] Funding Source: researchfish
  5. Novo Nordisk Fonden [NNF10CC1016517] Funding Source: researchfish
  6. Div Of Molecular and Cellular Bioscience
  7. Direct For Biological Sciences [1448657] Funding Source: National Science Foundation

向作者/读者索取更多资源

Microbial fermentation conditions are dynamic, due to transcriptional induction, nutrient consumption, or changes to incubation conditions. In this study, C-13-metabolic flux analysis was used to characterize two violacein-producing E. coli strains with vastly different productivities, and to profile their metabolic adjustments resulting from external perturbations during fermentation. The two strains were first grown at 37 degrees C in stage 1, and then the temperature was transitioned to 20 degrees C in stage 2 for the optimal expression of the violacein synthesis pathway. After induction, violacein production was minimal in stage 3, but accelerated in stage 4 (early production phase) and 5 (late production phase) in the high producing strain, reaching a final concentration of 1.5 mmol/L. On the contrary, similar to 0.02 mmol/L of violacein was obtained from the low producing strain. To have a snapshot of the temporal metabolic changes in each stage, we performed C-13-MFA via isotopomer analysis of fast-turnover free metabolites. The results indicate strikingly stable flux ratios in the central metabolism throughout the early growth stages. In the late stages, however, the high producer rewired its flux distribution significantly, which featured an upregulated pentose phosphate pathway and TCA cycle, reflux from acetate utilization, negligible anabolic fluxes, and elevated maintenance loss, to compensate for nutrient depletion and drainage of some building blocks due to violacein overproduction. The low producer with stronger promoters shifted its relative fluxes in stage 5 by enhancing the flux through the TCA cycle and acetate overflow, while exhibiting a reduced biomass growth and a minimal flux towards violacein synthesis. Interestingly, the addition of the violacein precursor (tryptophan) in the medium inhibited high producer but enhanced low producer's productivity, leading to hypotheses of unknown pathway regulations (such as metabolite channeling).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据