4.7 Article

Development and testing of an integrated smart tool holder for four-component cutting force measurement

期刊

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
卷 93, 期 -, 页码 225-240

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2017.01.038

关键词

Smart tool holder; Rotating dynamometer; Cutting force measurement; Milling process; Deformable beam; Capacitive sensor

资金

  1. National High Technology Research and Development Program of China (863 Program) [2013AA041107]

向作者/读者索取更多资源

Cutting force measurement is a significant requirement for monitoring and controlling the machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this study, an innovative integrated smart tool holder system based on capacitive sensors is designed, constructed and tested, which is capable of measuring triaxial cutting force and a torque simultaneously in a wireless environment system. A standard commercial tool holder is modified to make itself be the force sensing element that has advantages of simple structure and easy machining. Deformable beams are created in the tool holder, and the tiny deformations of which used to calculate the four-component cutting force are detected by six high precision capacitive sensors. All the sensors and other electronics, like data acquisition and transmitting unit, and wireless power unit, are incorporated into the tool holder as a whole system. The device is intended to be used in a rotating spindle such as in milling and drilling processes. Eventually, the static and dynamic characteristics of the smart tool holder have been determined by a series of tests. Cutting tests have also been carried out and the results show it is stable and practical to measure the cutting force in milling and drilling processes. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Automation & Control Systems

An integrated wireless vibration sensing tool holder for milling tool condition monitoring

Zhengyou Xie, Jianguang Li, Yong Lu

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY (2018)

Article Automation & Control Systems

Feature selection and a method to improve the performance of tool condition monitoring

Zhengyou Xie, Jianguang Li, Yong Lu

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY (2019)

Article Automation & Control Systems

A 3D analytical model for residual stress in flank milling process

S. Q. Wang, J. G. Li, C. L. He, Z. Y. Xie

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY (2019)

Article Automation & Control Systems

A multi-sensor integrated smart tool holder for cutting process monitoring

Zhengyou Xie, Yong Lu, Xinlong Chen

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY (2020)

Article Engineering, Manufacturing

Development and testing of a wireless multi-axis toolholder dynamometer for milling and drilling process

Pengfei Zhang, Dong Gao, Yong Lu, Zhengyou Xie, Zhiqi Wang

Summary: This paper presents the design and development of a split multi-axis toolholder dynamometer, which can accurately and reliably monitor cutting forces in milling and drilling operations.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE (2023)

Article Engineering, Aerospace

Position Awareness Network for Noncooperative Spacecraft Pose Estimation Based on Point Cloud

Xiang Liu, Hongyuan Wang, Xinlong Chen, Weichun Chen, Zhengyou Xie

Summary: This article proposes a position awareness network (PANet) for spacecraft pose estimation, which solves the problem of low estimation accuracy by extracting key points and constructing local structural descriptors. The matching matrix between point clouds is calculated to solve the pose using weighted singular value decomposition (SVD). Experimental results demonstrate that PANet outperforms state-of-the-art methods.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS (2023)

Article Computer Science, Information Systems

Design and Analysis of Preload Control for Space Debris Impact Adhesion Capture Method

Zhengyou Xie, Xinlong Chen, Yajing Ren, Yangyang Zhao

IEEE ACCESS (2020)

Article Engineering, Electrical & Electronic

Modeling and Optimization of Tool Wear and Surface Roughness in Turning of Al/SiCp Using Response Surface Methodology

Rashid Ali Laghari, Jianguang Li, Zhengyou Xie, Shu-qi Wang

3D RESEARCH (2018)

Proceedings Paper Engineering, Electrical & Electronic

A Wireless Data Acquisition and Transmission System for Smart Tool Holder Based on Socket

Zhengyou Xie, Wenchao Dang, Yong Lu

PROCEEDINGS FIRST INTERNATIONAL CONFERENCE ON ELECTRONICS INSTRUMENTATION & INFORMATION SYSTEMS (EIIS 2017) (2017)

Proceedings Paper Automation & Control Systems

A New Dynamic Calibration Method for Integrated Force-measuring Tool Holder

Yue Hao, Zhengyou Xie, Yong Lu

PROCEEDINGS OF 2016 SIXTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION & MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2016) (2016)

Proceedings Paper Computer Science, Artificial Intelligence

Design and Analysis of a New Tool Holder with Force Sensing Element

Zhengyou Xie, Jianguang Li, Yong Lu

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LOGISTICS, ENGINEERING, MANAGEMENT AND COMPUTER SCIENCE (LEMCS 2015) (2015)

Proceedings Paper Computer Science, Artificial Intelligence

Transfer Efficiency Maximum Coil Turns of Symmetric Wireless Power System via Magnetic Resonance Coupling

Zhaoyang Zhang, Yong Lu, Zhengyou Xie

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LOGISTICS, ENGINEERING, MANAGEMENT AND COMPUTER SCIENCE (LEMCS 2015) (2015)

Article Engineering, Mechanical

Approximate symplectic approach for mistuned bladed disk dynamic problem

Xuanen Kan, Yanjun Lu, Fan Zhang, Weipeng Hu

Summary: A blade disk system is crucial for the energy conversion efficiency of turbomachinery, but differences between blades can result in localized vibration. This study develops an approximate symplectic method to simulate vibration localization in a mistuned bladed disk system and reveals the influences of initial positive pressure, contact angle, and surface roughness on the strength of vibration localization.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Dynamic characteristics of spur gear system with tooth root crack considering gearbox flexibility

Zimeng Liu, Cheng Chang, Haodong Hu, Hui Ma, Kaigang Yuan, Xin Li, Xiaojian Zhao, Zhike Peng

Summary: Considering the calculation efficiency and accuracy of meshing characteristics of gear pair with tooth root crack fault, a parametric model of cracked spur gear is established by simplifying the crack propagation path. The LTCA method is used to calculate the time-varying meshing stiffness and transmission error, and the results are verified by finite element method. The study also proposes a crack area share index to measure the degree of crack fault and determines the application range of simplified crack propagation path.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

A novel forward computational modal analysis method of the motor stator assembly considering core lamination and winding stacking

Rongjian Sun, Conggan Ma, Nic Zhang, Chuyo Kaku, Yu Zhang, Qirui Hou

Summary: This paper proposes a novel forward calculation method (FCM) for calculating anisotropic material parameters (AMPs) of the motor stator assembly, considering structural discontinuities and composite material properties. The method is based on multi-scale theory and decouples the multi-scale equations to describe the equivalence and equivalence preconditions of AMPs of two scale models. The effectiveness of this method is verified by modal experiments.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

An Intelligent Scheduling System and Hybrid Optimization Algorithm for Ship Locks of the Three Gorges Hub on the Yangtze River

Hao Zhang, Jiangcen Ke

Summary: This research introduces an intelligent scheduling system framework to optimize the ship lock schedule of the Three Gorges Hub. By analyzing navigational rules, operational characteristics, and existing problems, a mixed-integer nonlinear programming model is formulated with multiple objectives and constraints, and a hybrid intelligent algorithm is constructed for optimization.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

An enhanced ultrasonic method for monitoring and predicting stress loss in multi-layer structures via vibro-acoustic modulation

Jingjing He, Xizhong Wu, Xuefei Guan

Summary: A sensitivity and reliability enhanced ultrasonic method has been developed in this study to monitor and predict stress loss in pre-stressed multi-layer structures. The method leverages the potential breathing effect of porous cushion materials in the structures to increase the sensitivity of the signal feature to stress loss. Experimental investigations show that the proposed method offers improved accuracy, reliability, and sensitivity to stress change.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Spectral estimation model for linear displacement and vibration monitoring with GBSAR system

Benyamin Hosseiny, Jalal Amini, Hossein Aghababaei

Summary: This paper presents a method for monitoring sub-second or sub-minute displacements using GBSAR signals, which employs spectral estimation to achieve multi-dimensional target detection. It improves the processing of MIMO radar data and enables high-resolution fast displacement monitoring from GBSAR signals.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Transformer-based meta learning method for bearing fault identification under multiple small sample conditions

Xianze Li, Hao Su, Ling Xiang, Qingtao Yao, Aijun Hu

Summary: This paper proposes a novel method for bearing fault identification, which can accurately identify faults with few samples under complex working conditions. The method is based on a Transformer meta-learning model, and the final result is determined by the weighted voting of multiple models.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Correlation warping radius tracking for condition monitoring of rolling bearings under varying operating conditions

Xiaomeng Li, Yi Wang, Guangyao Zhang, Baoping Tang, Yi Qin

Summary: Inspired by chaos fractal theory and slowly varying damage dynamics theory, this paper proposes a new health monitoring indicator for vibration signals of rotating machinery, which can effectively monitor the mechanical condition under both cyclo-stationary and variable operating conditions.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Latching control: A wave energy converter inspired vibration control strategy

Hao Wang, Songye Zhu

Summary: This paper extends the latching mechanism to vibration control to improve energy dissipation efficiency. An innovative semi-active latched mass damper (LMD) is proposed, and different latching control strategies are tested and evaluated. The latching control can optimize the phase lag between control force and structural response, and provide an innovative solution to improve damper effectiveness and develop adaptive semi-active dampers.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

A hierarchical Bayesian modeling framework for identification of Non-Gaussian processes

Menghao Ping, Xinyu Jia, Costas Papadimitriou, Xu Han, Chao Jiang, Wang-Ji Yan

Summary: Identification of non-Gaussian processes is a challenging task in engineering problems. This article presents an improved orthogonal series expansion method to convert the identification of non-Gaussian processes into a finite number of non-Gaussian coefficients. The uncertainty of these coefficients is quantified using polynomial chaos expansion. The proposed method is applicable to both stationary and nonstationary non-Gaussian processes and has been validated through simulated data and real-world applications.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Double mechanical frequencies locking phenomenon in a piezoelectric driven 3-DOF magnetic coupling resonator

Lei Li, Wei Yang, Dongfa Li, Jianxin Han, Wenming Zhang

Summary: The frequency locking phenomenon induced by modal coupling can effectively overcome the dependence of peak frequency on driving strength in nonlinear resonant systems and improve the stability of peak frequency. This study proposes the double frequencies locking phenomenon in a three degrees of freedom (3-DOF) magnetic coupled resonant system driven by piezoelectricity. Experimental and theoretical investigations confirm the occurrence of first frequency locking and the subsequent switching to second frequency locking with the increase of driving force. Furthermore, a mass sensing scheme for double analytes is proposed based on the double frequencies locking phenomenon.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Torsional vibration attenuation of a closed-loop engine crankshaft system via the tuned mass damper and nonlinear energy sink under multiple operating conditions

Kai Ma, Jingtao Du, Yang Liu, Ximing Chen

Summary: This study explores the feasibility of using nonlinear energy sinks (NES) as replacements for traditional linear tuned mass dampers (TMD) in practical engineering applications, specifically in diesel engine crankshafts. The results show that NES provides better vibration attenuation for the crankshaft compared to TMD under different operating conditions.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Mixed-flow pump cavitation characteristics extraction based on power spectrum density through pressure pulsation signal analysis

Wentao Xu, Li Cheng, Shuaihao Lei, Lei Yu, Weixuan Jiao

Summary: In this study, a high-precision hydraulic mechanical stand and a vertical mixed-flow pumping station device were used to conduct research on cavitation signals of mixed-flow pumps. By analyzing the water pressure pulsation signal, it was found that the power spectrum density method is more sensitive and capable of extracting characteristics compared to traditional time-frequency domain analysis. This has significant implications for the identification and prevention of cavitation in mixed-flow pump machinery.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Design of a two-stage compliant asymmetric piezoelectrically actuated microgripper with parasitic motion compensation

Xiaodong Chen, Kang Tai, Huifeng Tan, Zhimin Xie

Summary: This paper addresses the issue of parasitic motion in microgripper jaws and its impact on clamping accuracy, and proposes a symmetrically stressed parallelogram mechanism as a solution. Through mechanical modeling and experimental validation, the effectiveness of this method is demonstrated.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)

Article Engineering, Mechanical

Influences of inclined crack defects on vibration characteristics of cylindrical roller bearings

Zhifeng Shi, Gang Zhang, Jing Liu, Xinbin Li, Yajun Xu, Changfeng Yan

Summary: This study provides useful guidance for early bearing fault detection and diagnosis by investigating the effects of crack inclination and propagation direction on the vibration characteristics of bearings.

MECHANICAL SYSTEMS AND SIGNAL PROCESSING (2024)