4.7 Article

Influence of microstructure on fatigue crack nucleation and microstructurally short crack growth of an austenitic stainless steel

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2017.09.081

关键词

Crack initiation; Microstructurally small crack growth; Martensitic transformation; Microstructure; 304 L stainless steel; Fatigue

向作者/读者索取更多资源

In this study, the effect of microstructure on crack nucleation and microstructurally short fatigue crack growth is investigated for a metastable austenitic stainless steel. Fatigue tests were conducted at an intermediate fatigue life regime between 10(4) and 10(6) cycles such that martensitic phase transformation occurs given sufficient localized deformation. Through the use of scanning electron microscopy, along with electron backscatter diffraction, several micro-cracks were analyzed and compared. The influence of microstructural features such as twin boundaries, slip band intrusions/extrusions, grain boundaries, inclusions, and martensitic transformed areas on the crack initiation life is discussed. The initiation stages of crack nucleation and the subsequent microstructurally short crack growth for each microstructural feature are compared revealing that twin boundaries and slip bands are the most dominant initiation features. However, the initiation mechanism governing crack nucleation for each feature was different. Additionally, the phase transformation behavior showed only minor effects on the microstructurally short crack growth leading up to an engineering crack. It was found that while the cracks that propagated more quickly had larger transformed martensitic zones around the crack tip, this was due mostly to the size of the crack. Interestingly, the initiation life in the transitional fatigue regime was observed to be more sensitive to crack initiation feature than the martensitic transformation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据