4.7 Article

Dislocation theory-based cohesive model for microstructurally short fatigue crack growth

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2017.09.087

关键词

Dislocation theory; Short crack growth; Cohesive zone model; Microstructure

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0008637]

向作者/读者索取更多资源

A continuous representation of dislocations is used to represent a mode-II crack and the associated plastic zone. In the original formulation of dislocation theory, the friction stress that opposes the motion of the dislocations is represented by a constant stress. In our new formulation, we embed a cohesive zone in the plastic region in front of a crack tip by representing the friction stress as a function of the crack displacement. This allows cohesive zone models (obtainable from a lower scale simulation, such as molecular dynamics) to be integrated into a dislocation theory-based model, for the first time, to predict short crack growth. The details of this new formulation are shown for the two cases: the crack and the associated plastic zone inside a grain, and the crack and the associated plastic zone tip at the grain boundary. The main features of this new model are discussed along with an experimental comparison to the case of microstructurally short fatigue crack growth across two grains in a Ni-based CMSX-4 alloy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据