4.3 Article

A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2016.11.084

关键词

Bio-ceramics; Sol-gel; Nanomaterials; Powder

向作者/读者索取更多资源

In the present study three akermanite (Ca2MgSi2O2), diopside (CaMgSi2O6) and baghdadite (Ca3ZrSi2O9) applicable bioceramics were synthesized via a sol-gel based method. The combination of sol-gel method and the raw materials used in this study presents a new route for the synthesis of the mentioned bioceramics. By the use of thermal analysis, the mechanisms occurred during the synthesis of these bioceramics were investigated. The differences in the structural density and their relation with the degradation rate and mechanical properties of all three ceramics were studied. In vitro bioactivity and apatite formation mechanisms of the samples soaked in the simulated body fluid were considered. The results showed that baghdadite as a Zr-containing material has a more dense structure in comparison with the other ceramics, which leads to a lower degradation rate and also lower bioactivity. There were also main differences between akermanite and diopside as Mg-containing ceramics. Diopside showed a structure with lower porosity content compared to the akermanite samples which resulted in the lower degradation rate and higher compressive strength. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据