4.7 Article

Environmental controls on spatial patterns in the long-term persistence of giant kelp in central California

期刊

ECOLOGICAL MONOGRAPHS
卷 86, 期 1, 页码 45-60

出版社

WILEY
DOI: 10.1890/15-0267.1

关键词

foundation species; generalized linear mixed effects models; giant kelp; GLMM; Macrocystis pyrifera; population connectivity; spatial persistence; wave climate

类别

资金

  1. National Science Foundation (NSF)
  2. NSF Ocean Sciences Grant [OCE-1233288]
  3. U.S. Geological Survey's Coastal and Marine Geology Program
  4. Directorate For Geosciences [1233283] Funding Source: National Science Foundation
  5. Division Of Ocean Sciences [1233283] Funding Source: National Science Foundation
  6. Division Of Ocean Sciences
  7. Directorate For Geosciences [1233839, 1232779] Funding Source: National Science Foundation

向作者/读者索取更多资源

As marine management measures increasingly protect static areas of the oceans, it is important to make sure protected areas capture and protect persistent populations. Rocky reefs in many temperate areas worldwide serve as habitat for canopy-forming macroalgae and these structure-forming species of kelps (order Laminariales) often serve as important habitat for a great diversity of species. Macrocystis pyrifera is the most common canopy-forming kelp species found along the coast of California, but the distribution and abundance of M. pyrifera varies in space and time. The purpose of this study is to determine what environmental parameters are correlated with and their relative contribution to the spatial and temporal persistence of M. pyrifera along the central coast of California and how well those environmental parameters can be used to predict areas where this species is more likely to persist. Nine environmental variables considered in this study included depth of the seafloor, structure of the rocky reef, proportion of rocky reef, size of kelp patch, biomass of kelp within a patch, distance from the edge of a kelp patch, sea surface temperature, wave orbital velocities, and population connectivity of individual kelp patches. Using a generalized linear mixed effects model (GLMM), the persistence of M. pyrifera was significantly associated with seven of the nine variables considered: depth, complexity of the rocky reef, proportion of rock, patch biomass, distance from the edge of a patch, population connectivity, and wave orbital velocities. These seven environmental variables were then used to predict the persistence of kelp across the central coast, and these predictions were compared to a reserved dataset of M. pyrifera persistence, which was not used in the creation of the GLMM. The environmental variables were shown to accurately predict the persistence of M. pyrifera within the central coast of California (r = 0.71, P < 0.001). Because persistence of giant kelp is important to the community structure of kelp forests, understanding those factors that support persistent populations of M. pyrifera will enable more effective management of these ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据