4.6 Article

Identification and Differential Expression of Biomineralization Genes in the Mantle of Pearl Oyster Pinctada fucata

期刊

MARINE BIOTECHNOLOGY
卷 19, 期 3, 页码 266-276

出版社

SPRINGER
DOI: 10.1007/s10126-017-9748-6

关键词

Pinctada fucata; Transcriptome; Biomineralization; Relative expression level; Differential expression

资金

  1. Earmarked Fund for China Agriculture Research System [CARS-48]
  2. National Natural Science Foundation of China [31372525]
  3. Special Fund for Marine Fisheries Research and Extension of Guangdong Province [Z2014006, Z2015009, Z2015010]

向作者/读者索取更多资源

A series of proteins are involved in shell formation of the pearl oyster Pinctada fucata, but the involved mechanisms and the relative expression levels of these proteins have not been elucidated. In this study, we sequenced and characterized the transcriptome of P. fucata mantle tissue. A total of 100,679 unique transcripts were assembled, 43687 Unigenes were annotated, and 48654 CDSs were determined. Of these, GO annotated 16353 Unigenes, COG defined 11585 unigenes into 25 categories, and KEGG sorted 25053 unigenes into 258 pathways. In total, 67 biomineralization-related genes were identified, of which 23 genes were newly described in P. fucata. These genes included ones that expressed shell matrix proteins, regulatory factors, and uncharacterized genes. Differential expression of these 67 genes and 9 other biomineralization-related genes was confirmed using qPCR. Of the 8 nacreous layer-related genes, MSI60 (774.00) was expressed at a much higher level than the others. KRMP2-4 and MSI31 were the most highly expressed of the 13 prismatic layer-related genes and KRMP2 was expressed at nearly 10000 times of the level of the 18S gene. For genes related to both layers, shematrin 2 (3977.84), nacrein (2404.75), PFMG 10 (2113.93), and PFMG 4 (1015.89) were highly expressed, and ferritin-like protein (877.54) and PFMG 8 (516.48) were highly expressed among the 16 undefined genes. The expression levels of regulation factors were generally low, and the highest level was 324.09 (EF-hand) and the lowest occurred in the BMP and wnt families. The expression levels of the prismatic matrix proteins were much higher than those of nacreous ones, consistent with a thicker prismatic layer. MSI60 and nacrein are likely the main components of the nacreous layer, and KRMP2-4, MSI31, shematrin 2, and PFMG 10 gene products are the main components of the prismatic layer. This is the first report of transient expression levels of a large number of biomineralization-related genes at the same time in mantle tissue of P. fucata. These findings provide a novel perspective to understand the molecular mechanisms of shell formation and will be beneficial to genetic improvement of P. fucata for the production of high-quality pearls as well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据