4.6 Article

Stability of Polyethylene Glycol and Zwitterionic Surface Modifications in PDMS Microfluidic Flow Chambers

期刊

LANGMUIR
卷 34, 期 1, 页码 492-502

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.7b03095

关键词

-

资金

  1. VA RR&D Award, The Advanced Platform Technology Research Center of Excellence [C3819C]
  2. Department of Veterans Affairs Rehabilitation Research and Development (VA RRD) Award [I01 RX000390]

向作者/读者索取更多资源

Blood-material interactions are crucial to the lifetime, safety, and overall success of blood contacting devices. Hydrophilic polymer coatings have been employed to improve device lifetime by shielding blood contacting materials from the natural foreign body response, primarily the intrinsic pathway of the coagulation cascade. These coatings have the ability to repel proteins, cells, bacteria, and other micro-organisms. Coatings are desired to have long-term stability, so that the nonthrombogenic and nonfouling effects gained are long lasting. Unfortunately, there exist limited studies which investigate their stability under dynamic flow conditions as encountered in a physiological setting. In addition, direct comparisons between multiple coatings are lacking in the literature. In this study, we investigate the stability of polyethylene glycol (PEG), zwitterionic sulfobetaine silane (SBSi), and zwitterionic polyethylene glycol sulfobetaine silane (PEG-SBSi) grafted by a room temperature, sequential flow chemistry process on polydimethylsiloxane (PDMS) over time under ambient, static fluid (no flow), and physiologically relevant flow conditions and compare the results to uncoated PDMS controls. PEG, SBSi, and PEG-SBSi coatings maintained contact angles below 20 degrees for up to 35 days under ambient conditions. SBSi and PEG-SBSi showed increased stability and hydrophilicity after 7 days under static conditions. They also retained contact angles <= 40 degrees for all shear rates after 7 days under flow, demonstrating their potential for long-term stability. The effectiveness of the coatings to resist platelet adhesion was also studied under physiological flow conditions. PEG showed a 69% reduction in adhered platelets, PEG-SBSi a significant 80% reduction, and SBSi a significant 96% reduction compared to uncoated control samples, demonstrating their potential applicability for blood contacting applications. In addition, the presented coatings and their stability under shear may be of interest in other applications including marine coatings, lab on a chip devices, and contact lenses, where it is desirable to reduce surface fouling due to proteins, cells, and other organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据