4.6 Article

Tortuosity of Composite Porous Electrodes with Various Conductive Additives in an Alkaline System

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 164, 期 13, 页码 A3117-A3130

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0911713jes

关键词

-

资金

  1. BMR program of the U. S. Department of Energy

向作者/读者索取更多资源

The role of carbon additives in improving the electronic conductivity of composite porous electrodes is well understood. However, there has been little work studying the effect of various carbon additives on effective ionic transport in porous electrodes. This work determines effective ionic conductivities and associated tortuosities of composite cathodes with various types of carbon additive and porosities in an alkaline system. A two-compartment direct-current method was developed to make these measurements and was validated with multiple electrolyte solutions. This experimental method was modeled using COMSOL Multiphysics in order to understand the effect of design parameters on the polarization curve. Empirical correlations were developed to predict the effect of porosity and various carbon additives on tortuosity. As expected, the results show that tortuosity decreases with porosity and increases with carbon amount. Cathodes containing BNB90 and KS6 carbon additives have the highest and the lowest tortuosity, respectively. Furthermore, for cathodes containing BNB90, tortuosity in the direction orthogonal to the direction of compression (in-plane tortuosity) was found to be less than tortuosity in the direction parallel to compression (out-of-plane tortuosity). (C) The Author(s) 2017. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据