4.7 Article

Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy

期刊

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY
卷 28, 期 10, 页码 2961-2972

出版社

AMER SOC NEPHROLOGY
DOI: 10.1681/ASN.2016101103

关键词

-

资金

  1. Swedish Medical Research Council [14764]
  2. National Association for Kidney Diseases
  3. John and Brit Wennerstrom Research Foundation
  4. Inga-Britt and Arne Lundberg Research Foundation
  5. ALF grants from the Sahlgrenska University Hospital

向作者/读者索取更多资源

IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell positive standard genes. Additionally, patient clinical parameters (serum creatinine values and eGFRs) significantly correlated with Z scores derived from the expression profile of mesangial cell positive standard genes. Among patients grouped according to Oxford MEST score, patients with segmental glomerulosclerosis had a significantly higher mesangial cell positive standard gene Z score than patients without segmental glomerulosclerosis. By investigating mesangial cell proteomics and glomerular transcriptomics, we identified 22 common pathways induced in mesangial cells by gd-IgA, most of which mediate inflammation. The genes, proteins, and corresponding pathways identified provide novel insights into the pathophysiologic mechanisms leading to IgAN.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据