4.5 Article

Drought-induced expression of aquaporin genes in leaves of two common bean cultivars differing in tolerance to drought stress

期刊

JOURNAL OF PLANT RESEARCH
卷 130, 期 4, 页码 735-745

出版社

SPRINGER JAPAN KK
DOI: 10.1007/s10265-017-0920-x

关键词

Aquaporins; Drought; Gene expression; Common bean

资金

  1. Slovenian Research Agency [J4-4126, P4-0072]

向作者/读者索取更多资源

Aquaporin proteins are part of the complex response of common bean (Phaseolus vulgaris L.) to drought which affects the quality and quantity of yield of this important crop. To better understand the role of aquaporins in common bean, drought-induced gene expression of several aquaporins was determined in two cultivars, the more drought tolerant Tiber and the less tolerant Starozagorski ern. The two bean cultivars were selected among 16 European genotypes based on the tolerance to drought determined by time needed for plants to wilt after withholding irrigation and yield at harvest. The expression patterns of two plasma membrane intrinsic proteins, PvPIP1;2 and PvPIP2;7, and two tonoplast intrinsic proteins, PvTIP1;1 and PvTIP4;1 in leaves of 21 day old plants were determined by RT-qPCR in both cultivars under three degrees of drought stress, and under rehydration and control conditions. Gene expression of all four examined aquaporins was down-regulated in drought stressed plants. After rehydration it returned to the level of control plants or was even higher. The responses of PvPIP2;7 and PvTIP1;1 during drought and rehydration were particularly pronounced. The gene expression of PvPIP2;7 and PvTIP4;1 during drought was cultivar specific, with greater down-regulation of these two aquaporins in drought tolerant Tiber. Under drought stress the relative water content and water potential of leaves were higher in Tiber than in Starozagorski plants. The differences in these physiological parameters indicate greater prevention of water loss in Tiber during drought, which may be associated with rapid and adequate down-regulation of aquaporins. These results suggest that the ability of plants to conserve water during drought stress involves timely and sufficient down-regulation of gene expression of specific aquaporins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据