4.5 Review

Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 29, 期 43, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-648X/aa7b4d

关键词

cavity quantum electrodynamics; quantum dots; quantum transport

资金

  1. ERC
  2. EU [SE2ND[271554]]

向作者/读者索取更多资源

Circuit QED techniques have been instrumental in manipulating and probing with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices in which the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments uses cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据