4.8 Article

Cooperative Hydrogen-Bond Dynamics at a Zwitterionic Lipid/Water Interface Revealed by 2D HD-VSFG Spectroscopy

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 8, 期 20, 页码 5160-5165

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.7b02057

关键词

-

资金

  1. JSPS KAKENHI Grant [JP25104005]

向作者/读者索取更多资源

Molecular-level elucidation of hydration at biological membrane interfaces is of great importance for understanding biological processes. We studied ultrafast hydrogen-bond dynamics at a zwitterionic phosphatidylcholine/water interface by two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) spectroscopy. The obtained 2D spectra confirm that the anionic phosphate and cationic choline sites are individually hydrated at the interface. Furthermore, the data show that the dynamics of water at the zwitterionic lipid interface is not a simple sum of the dynamics of the water species that hydrate to the separate phosphate and choline. The center line slope (CLS) analysis of the 2D spectra reveals that ultrafast hydrogen bond fluctuation is not significantly suppressed around the phosphate at the zwitterionic lipid interface, which makes the hydrogen-bond dynamics look similar to that of the bulk water. The present study indicates that the hydrogen-bond dynamics at membrane interfaces is not determined only by the hydrogen bond to a specific site of the interface but is largely dependent on the water dynamics in the vicinity and other nearby moieties, through the hydrogen-bond network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据