4.6 Article

Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO4 Nanoparticles

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 121, 期 35, 页码 19373-19382

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.7b06549

关键词

-

资金

  1. European Union [604387]

向作者/读者索取更多资源

Lanthanide-doped nanocrystals (NCs) differ from their bulk counterparts due to their large surface to volume ratio. It is generally assumed that the optical properties are not affected by size effects as electronic transitions occur within the well-shielded 4f shell of the lanthanide dopant ions. However, defects and disorder in the surface layer can affect the luminescence properties. Trivalent europium is a suitable ion to investigate the subtle influence of the surface, because of its characteristic luminescence and high sensitivity to the local environment. Here, we investigate the influence of disorder in NCs on the optical properties of lanthanide dopants by studying the inhomogeneous linewidth, emission intensity ratios, and luminescence decay curves for LaPO4:Eu3+ samples of different sizes (4 nm to bulk) and core-shell configurations (core, core-isocrystalline shell, and core-silica shell). We show that the emission linewidths increase strongly for NCs. The ratio of the intensities of the forced electric dipole (ED) and magnetic dipole (MD) transitions, a measure for the local symmetry distortion around Eu3+ ions, is higher for samples with a large fraction of Eu3+ ions close to the surface. Finally, we present luminescence decay curves revealing an increased nonradiative decay rate for Eu3+ in NCs. The effects are strongest in core and core-silica shell NCs and can be reduced by growth of an isocrystalline LaPO4 shell. The present systematic study provides quantitative insight into the role of surface disorder on the optical properties of lanthanide-doped NCs. These insights are important in emerging applications of lanthanide-doped nanocrystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

In Situ Embedding Synthesis of CsPbBr3@Ce-MOF@SiO2 Nanocomposites for High Efficiency Light-Emitting Diodes: Suppressing Reabsorption Losses through the Waveguiding Effect

Jiejun Ren, Andries Meijerink, Xiaopeng Zhou, Jiapeng Wu, Gangyi Zhang, Yuhua Wang

Summary: In this work, a novel encapsulation strategy was developed to enhance the light conversion efficiency and stability of all-inorganic perovskite quantum dots (PQDs). The strategy involved the in situ growth of CsPbX3 PQDs in mesoporous cerium-based metal organic frameworks (Ce-MOFs) and further silane hydrolysis-encapsulation with SiO2. The simulation results showed that the Ce-MOFs had a waveguide effect on the incident PQD light, increasing the overall light conversion efficiency. The Ce-MOF@SiO2 protective shell effectively improved the stability of the PQDs by blocking them from the harmful external environment. The obtained white-light-emitting diode showed an ultrahigh luminous efficiency of 87.8 lm/W, demonstrating the great potential of PQDs in optoelectronic applications.

ACS APPLIED MATERIALS & INTERFACES (2022)

Article Chemistry, Physical

Two-Dimensional CdSe-PbSe Heterostructures and PbSe Nanoplatelets: Formation, Atomic Structure, and Optical Properties

Bastiaan B. Salzmann, Jur de Wit, Chen Li, Daniel Arenas-Esteban, Sara Bals, Andries Meijerink, Daniel Vanmaekelbergh

Summary: This study prepared two-dimensional CdSe-PbSe heterostructures and PbSe NPLs through Pb2+-for-Cd2+ cation exchange and characterized the intermediary NCs with advanced microscopy and spectroscopy techniques. The growth of PbSe domains in CdSe NPLs occurs through the replacement of zinc blende CdSe lattice with rock salt PbSe phase while preserving the anion sublattice. Temperature-dependent emission measurements reveal size-dependent change of band gap energy and the influence of the anisotropic shape.

JOURNAL OF PHYSICAL CHEMISTRY C (2022)

Article Chemistry, Multidisciplinary

In Situ Optical and X-ray Spectroscopy Reveals Evolution toward Mature CdSe Nanoplatelets by Synergetic Action of Myristate and Acetate Ligands

Johanna C. van der Bok, P. Tim Prins, Federico Montanarella, D. Nicolette Maaskant, Floor A. Brzesowsky, Maaike M. van der Sluijs, Bastiaan B. Salzmann, Freddy T. Rabouw, Andrei Petukhov, Celso De Mello Donega, Daniel Vanmaekelbergh, Andries Meijerink

Summary: Researchers found through in situ studies that in the early stage of the CdSe nanoplatelet reaction, both isotropic nanocrystals and mini-nanoplatelets form in the absence of short-chain ligands, but most precursors are consumed in isotropic growth. The addition of acetate induces a dramatic shift towards nearly exclusive 2D growth of already existing mini-nanoplatelets. Therefore, mature nanoplatelets only grow through a subtle interplay between myristate and acetate, with the latter catalyzing fast lateral growth of the side facets of the mini-nanoplatelets.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Materials Science, Multidisciplinary

Luminescence Temperature Quenching in Mn2+ Phosphors

Arnoldus J. J. van Bunningen, Atul D. D. Sontakke, Ruben van der Vliet, Vincent G. G. Spit, Andries Meijerink

Summary: Narrower band red and green emission in phosphor-converted white light-emitting diodes can be achieved by using Mn2+ as a luminescent ion. The luminescence quenching temperature of Mn2+ is shown to vary greatly depending on the host material, with a positive correlation with the bandgap of the host. The quenching mechanism is found to be thermally activated photoionization, and a wide-bandgap host material is required for temperature-stable Mn2+ luminescence in high power LEDs.

ADVANCED OPTICAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

The Formation of NaYF4 : Er3+, Yb3+ Nanocrystals Studied by In Situ X-ray Scattering: Phase Transition and Size Focusing

P. Tim Prins, Johanna C. van Der Bok, Thomas P. van Swieten, Stijn O. M. Hinterding, Andy J. Smith, Andrei V. Petukhov, Andries Meijerink, Freddy T. Rabouw

Summary: The synthesis of beta-NaYF4 nanocrystals from alpha-NaYF4 precursor particles was investigated using in situ small-angle and wide-angle X-ray scattering and ex situ electron microscopy. It was observed that the particle size distribution evolved from unimodal to bimodal, and eventually back to unimodal, with the final distribution being narrower than the initial distribution. The splitting of the size distribution was attributed to variations in the reactivity of the precursor particles.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Physics, Applied

Twofold increase in the sensitivity of Er3+/Yb3+ Boltzmann thermometer

Aleksandar Ciric, Thomas van Swieten, Jovana Perisa, Andries Meijerink, Miroslav D. D. Dramicanin

Summary: Luminescence thermometry is a versatile remote temperature sensing technique. This study introduces a novel measurement technique, LIR2, which combines the temperature sensitivity of ground- and excited-state populations. By using Y3Al5O12:Er3+,Yb3+ nanoparticles, the LIR2 method shows significant increase in sensitivity and measurement precision comparing to the conventional LIR method.

JOURNAL OF APPLIED PHYSICS (2023)

Article Materials Science, Multidisciplinary

Identification and Quantification of Charge Transfer in CaAl2O4:Eu2+,Nd3+ Persistent Phosphor

Jintao Kong, Andries Meijerink

Summary: Based on simple optical spectroscopy, this study identifies the reversible charge transfer mechanism in the benchmark persistent phosphors CaAl2O4:Eu2+,Nd3+. The forward charge transfer from Eu2+ to Nd3+ and the backward charge transfer from Nd2+ to Eu3+ are confirmed. The percentages of Eu2+ and Nd3+ involved in the charge transfer exceed previous estimates in other persistent phosphors, and this strategy also offers additional advantages of site selectivity in identifying different contributions of Nd3+ sites. These findings highlight the importance of reversible charge transfer in persistent phosphors and contribute to a better understanding of the persistent luminescence mechanism.

ADVANCED OPTICAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

Increasing the Power: Absorption Bleach, Thermal Quenching, and Auger Quenching of the Red-Emitting Phosphor K2TiF6:Mn4+

Jur W. de Wit, Thomas P. van Swieten, Marie Anne van de Haar, Andries Meijerink, Freddy T. Rabouw

Summary: Mn4+-doped fluorides are commonly used phosphors for warm-white lighting by converting blue light from LEDs into red light. However, they suffer from droop, i.e., decreasing performance at higher power, which limits their application in high-power scenarios. This study provides a comprehensive explanation of droop in Mn4+-doped K2TiF6 by considering all previously proposed mechanisms. By combining experimental and modeling approaches, the contributions of absorption bleach, thermal quenching, and Auger quenching at different excitation densities are quantified. This work contributes to a better understanding of the limitations of these materials and may inspire strategies to enhance their efficiency in high-power applications.

ADVANCED OPTICAL MATERIALS (2023)

Article Materials Science, Multidisciplinary

Mixed Microscopic Eu2+ Occupancies in the Next-Generation Red LED Phosphor Sr[Li2Al2O2N2]:Eu2+ (SALON:Eu2+)

Freia Ruegenberg, Amador Garcia-Fuente, Markus Seibald, Dominik Baumann, Gregor Hoerder, Tim Fiedler, Werner Urland, Hubert Huppertz, Andries Meijerink, Markus Suta

Summary: Red-emitting narrow-band phosphors are crucial for the next generation of high-efficiency and optimized correlated color temperature white-light phosphor-converted light-emitting diodes. The crystalline structure of SALON:Eu2+ has been studied using X-ray diffraction, low-temperature luminescence spectroscopy, and ligand field theory to understand the local coordination symmetry and ligand ratio. The mutual energy transfer between Eu2+ centers in SALON:Eu2+ has been characterized using time-resolved luminescence.

ADVANCED OPTICAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Mapping Temperature Heterogeneities during Catalytic CO2 Methanation with Operando Luminescence Thermometry

Thimo S. Jacobs, Thomas P. van Swieten, Sander J. W. Vonk, Isa P. Bosman, Angela E. M. Melcherts, Bas C. Janssen, Joris C. L. Janssens, Matteo Monai, Andries Meijerink, Freddy T. Rabouw, Ward van der Stam, Bert M. Weckhuysen

Summary: This study investigates the local temperature variations in carbon dioxide methanation over a TiO2-supported Ni catalyst and links them to catalytic performance. Luminescence thermometry is used to measure the temperature-dependent emission and extract local temperatures. The findings highlight the importance of understanding and controlling temperature variations for optimizing catalyst performance.

ACS NANO (2023)

Review Chemistry, Physical

Optically detected magnetic resonance spectroscopic analyses on the role of magnetic ions in colloidal nanocrystals

Joanna Dehnel, Adi Harchol, Yahel Barak, Itay Meir, Faris Horani, Arthur Shapiro, Rotem Strassberg, Celso de Mello Donega, Hilmi Volkan Demir, Daniel R. Gamelin, Kusha Sharma, Efrat Lifshitz

Summary: Incorporating magnetic ions into semiconductor nanocrystals is a promising research field for manipulating spin-related properties. Various host materials and magnetic ions have been studied, and the impact of nanostructure engineering and ion selection in carrier-magnetic ion interactions is emphasized. The use of optically detected magnetic resonance spectroscopy provides valuable insights into the spin dynamics and physical parameters of the carrier-magnetic ion interactions.

JOURNAL OF CHEMICAL PHYSICS (2023)

Article Materials Science, Multidisciplinary

Understanding enormous redshifts in highly concentrated Mn2+ phosphors

Arnoldus J. J. van Bunningen, Simon Tobias Keizer, Andries Meijerink

Summary: Broad band NIR emission has been observed in concentrated Mn2+ phosphors, which is attributed to the presence of NIR emitting trap centers, possibly Mn3+. Exchange coupling between Mn2+ neighbors cannot explain the observed redshifts, as the magnitude is much larger than expected. Temperature and concentration dependent studies show that energy migration over the Mn2+ sublattice plays a key role in the NIR emission.

JOURNAL OF MATERIALS CHEMISTRY C (2023)

Article Chemistry, Multidisciplinary

Probing nearby molecular vibrations with lanthanide-doped nanocrystals

Mark J. J. Mangnus, Vincent R. M. Benning, Bettina Baumgartner, P. Tim Prins, Thomas P. van Swieten, Ayla J. H. Dekker, Alfons van Blaaderen, Bert M. Weckhuysen, Andries Meijerink, Freddy T. Rabouw

Summary: This study investigates the influence of solvent and gas environments on the photoluminescence (PL) properties of lanthanide-doped nanocrystals, and explains the changes in PL spectrum and excited-state lifetimes using energy transfer mediated by molecular vibrations. EVET-mediated quenching holds promise for probing the local chemical environment of nanocrystals dispersed in a liquid or exposed to gaseous molecules.

NANOSCALE (2023)

Article Chemistry, Multidisciplinary

Probing nearby molecular vibrations with lanthanide-doped nanocrystals

Mark J. J. Mangnus, Vincent R. M. Benning, Bettina Baumgartner, P. Tim Prins, Thomas P. van Swieten, Ayla J. H. Dekker, Alfons van Blaaderen, Bert M. Weckhuysen, Andries Meijerink, Freddy T. Rabouw

Summary: The photoluminescence of lanthanide-doped nanocrystals can be quenched by energy transfer to nearby molecular vibrations, which is often undesired but can provide information about molecular vibrations in the local environment. This study investigates the influence of solvent and gas environments on the photoluminescence properties of NaYF4:Er3+,Yb3+ upconversion nanocrystals and relates the changes to quenching by electronic-to-vibrational energy transfer. The results suggest that EVET-mediated quenching can be used as a mechanism to probe the local chemical environment in liquid and gas-phase systems.

NANOSCALE (2023)

Article Chemistry, Physical

Magic-Size Semiconductor Nanostructures: Where Does the Magic Come from?

Serena Busatto, Celso de Mello Donega

Summary: Research on magic-size colloidal nanostructures is still in its infancy, and many fundamental questions remain unanswered. The formation mechanisms and enhanced stability of these structures are complex and not yet understood. Further experimental investigations are needed to unravel these mysteries.

ACS MATERIALS AU (2022)

暂无数据