4.6 Article

Molecular Reactive Force-Field Simulations on the Carbon Nanocavities from Methane Pyrolysis

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 121, 期 13, 页码 7502-7513

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.7b00294

关键词

-

资金

  1. National Natural Science Foundation of China [21673210, U1530262]

向作者/读者索取更多资源

Hydrocarbon pyrolysis is the main way to achieve carbonaceous materials, while most related conversion mechanisms still remain unclear. This work images pyrolysis of methane at various temperatures and densities by molecular reactive force field (ReaxFF) simulations. First, it is interesting to find that the methane decay is dominated by intermolecular collision displacement instead of direct molecular decomposition. Second, a conversion of 1200 methane molecules into a regular carbon nanocavity (CNC) is realized at 3500 K temperature and 0.1 g/cm(3) density after a simulation lasting for 10 ns, with 923 carbon atoms and a diameter of 3.4 nm. Such CNC is a perfect precursor of carbon nanotubes, which is confirmed by a sequent simulation on a larger system of 2400 methane molecules and in agreement with several experimental observations. It is found that the CNC growth obeys a polyyne model, without any single aromatic ring formed in the growth. Furthermore, the complex CNC growth appears in some successive stages: primary methane decay, chain elongation and branching, cyclization and condensation, and final sheeting and curling. The regular rearrangement of CNC is thought to be attributed to the limited active centers formed at the initial cyclization and condensation stage; that is, it is a key to control the primary active centers to form regular carbonaceous materials. Polyyne is found in the pyrolysis of both methane and acetylene at high temperatures, suggesting that carbyne, a novel valuable carbonaceous material, may be obtained by hydrocarbon pyrolysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据