4.5 Article

Dark-Silicon Aware Design Space Exploration

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jpdc.2017.11.002

关键词

Dark silicon; Design space exploration (DSE); Performance simulation; Physical design estimates; Multicore design

资金

  1. CAPES (PROCAD grant) [88887.124141/2014-00]
  2. CNPq [460503/2014-06]
  3. Fundect-MS

向作者/读者索取更多资源

The design of processor platforms comprised of multiple cores has been subject of dramatic changes in the last years. Mainly due to physical constraints imposed by increases in leakage current stemming from shrinking dimensions in transistor manufacturing processes. Such constraints have brought forth what we know as dark silicon, the area of a chip which should be turned off or work on a minimum clock frequency to meet the power dissipation constraints. The technical challenge has been how to choose the hardware blocks (type and number) to meet all chip design constraints and goals. This work introduces a less conservative dark silicon estimate based on chip components power density and technological process and a technique that performs the design space exploration aware of the dark silicon constraints. Our design space exploration technique is built on the top of a multiobjective optimization model and it adopts the NSGA-II genetic algorithm to provide solutions (platforms) aware of the dark silicon. The technique has been validated and evaluated along with a brute force algorithm. Our experimental results show dark silicon chip percentages up to 13.61% leading to a chip area of 134 mm(2) which is tantamount to three cores area on the chip. The experiments comparing our DS-DSE performance to the brute force algorithm have shown that our strategy presents more performance scalability as the design space exploration (IP cores database) is increased. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据