4.0 Article

Gene networks associated with non-syndromic intellectual disability

期刊

JOURNAL OF NEUROGENETICS
卷 32, 期 1, 页码 6-14

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/01677063.2017.1404058

关键词

Idiopathic intellectual disability; genetics; neurodevelopment; neuro-transmission; dopaminergic; glutamatergic

资金

  1. Mater Medical Research Institute
  2. Mater Foundation
  3. Mater Foundation Fellowship
  4. NHMRC grant [APP1067795]

向作者/读者索取更多资源

Non-syndromic intellectual disability (NS-ID) is a genetically heterogeneous disorder, with more than 200 candidate genes to date. Despite the increasing number of novel mutations detected, a relatively low number of recurrently mutated genes have been identified, highlighting the complex genetic architecture of the disorder. A systematic search of PubMed and Medline identified 245 genes harbouring non-synonymous variants, insertions or deletions, which were identified as candidate NS-ID genes from case reports or from linkage or pedigree analyses. From this list, 33 genes are common to syndromic intellectual disability (S-ID) and 58 genes are common to certain neurological and neuropsychiatric disorders that often include intellectual disability as a clinical feature. We examined the evolutionary constraint and brain expression of these gene sets, and we performed gene network and protein-protein interaction analyses using GeneGO MetaCore (TM) and DAPPLE, respectively. The 245NS-ID candidate genes were over-represented in axon guidance, synaptogenesis, cell adhesion and neurotransmission pathways, all of which are key neurodevelopmental processes for the establishment of mature neuronal circuitry in the brain. These 245 genes exhibit significantly elevated expression in human brain and are evolutionarily constrained, consistent with expectations for a brain disorder such as NS-ID that is associated with reduced fecundity. In addition, we report enrichment of dopaminergic and glutamatergic pathways for those candidate NS-ID genes that are common to S-ID and/or neurological and neuropsychiatric disorders that exhibit intellectual disability. Collectively, this study provides an overview and analysis of gene networks associated with NS-ID and suggests modulation of neurotransmission, particularly dopaminergic and glutamatergic systems as key contributors to synaptic dysfunction in NS-ID.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据