4.7 Article

Prevention of peptide fouling on ion-exchange membranes during electrodialysis in overlimiting conditions

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 543, 期 -, 页码 212-221

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2017.08.039

关键词

Demineralization; Peptide fouling; Electrostatic interactions; Water splitting; Vortices

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [210829409]

向作者/读者索取更多资源

Peptide fouling occurring on anion- (AEMs) and cation-exchange membranes (CEMs) is one of the most serious issues of conventional electrodialysis (ED) process for hydrolysate demineralization. Nonetheless, recent studies discussed the advantages of non-conventional ED phenomena such as water splitting and electroconvection on decreasing scaling and fouling. Thereby, peptide fouling was characterized using four different ED regimes: no current applied, underlimiting (conventional), limiting (water splitting) and overlimiting (electroconvection and water splitting) conditions. Results demonstrated that fouling-related interactions were mainly electrostatic with AEMs whereas they were both electrostatic and hydrophobic with CEMs. After 60 min, the demineralization rate was six times higher in overlimiting than underlimiting conditions. In addition, peptide fouling was 62% and 36% lower in overlimiting condition for AEMs and CEMs, respectively. It was hypothesized that (1) water splitting would have repealed the peptide charges through its barrier effect and (2) electroconvective vortices generated at the membranes interfaces would have washed-out their surfaces and hampered the attachment of peptides. Interestingly, ED under overlimiting conditions is a promising way to avoid peptide fouling. Consequently, membranes lifetime would be longer and new ED applications would be possible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据