4.5 Article

Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmmm.2017.07.024

关键词

Ferrofluid; Low oscillating magnetic; Different shapes of particles and rotating disk

向作者/读者索取更多资源

The purpose of this study is to theoretically examine nanoparticle shapes behavior on mass and heat flow of ferrofluid over a rotating disk with the presence of low oscillating magnetic field. Ferrofluid is prepared by water and iron nanoparticles of three different shapes like sphere, oblate ellipsoid and prolate ellipsoid. The problem has been formulated by employing the controllable force into the fundamental hydrodynamic equations and its effect along with particle shape factor on physical properties of fluid is discussed. These equations are converted into a system of ordinary differential equations by employing appropriate similarity approach and then solved by HAM based Bvph2 package. Effects of particle shape, particle volume fraction and magnetization parameter on axial, radial and tangential velocities along with temperature profile are demonstrated through graphically. The results for local Nusselt number are calculated and analyzed and the path for enhancement in heat transfer is also proposed. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据