4.1 Article

Vacuum ultraviolet photon-mediated production of [18F]F2

期刊

出版社

WILEY
DOI: 10.1002/jlcr.3489

关键词

[F-18]F-2; [F-18]NFSi; electrophilic F-18; excimer laser; fluorine-18; PET; radiochemistry; specific activity

资金

  1. European Community [FP7-PEOPLE-2012-ITN-RADIOMI-316882]
  2. Academy of Finland [266891]

向作者/读者索取更多资源

The chemistry of F-2 and its derivatives are amenable to facile aliphatic or aromatic substitution, as well as electrophilic addition. The main limitation in the use of [F-18]F-2 for radiopharmaceutical synthesis is the low specific activity achieved by the traditional methods of production. The highest specific activities, 55GBq/mol, for [F-18]F-2 have been achieved so far by using electrical discharge in the post-target production of [F-18]F-2 gas from [F-18]CH3F. We demonstrate that [F-18]F-2 is produced by illuminating a gas mixture of neon/F-2/[F-18]CH3F with vacuum ultraviolet photons generated by an excimer laser. We tested several illumination chambers and production conditions. The effects of the initial amount of [F-18]F-, amount of carrier F-2, and number of 193-nm laser pulses at constant power were evaluated regarding radiochemical yield and specific activity. The specific activity attained for [F-18]F-2-derived [F-18]NFSi was 10.3 +/- 0.9GBq/mol, and the average radiochemical yield over a wide range of conditions was 6.7% from [F-18]F-. The production can be improved by optimization of the synthesis device and procedures. The use of a commercially available excimer laser and the simplicity of the process can make this method relatively easy for adaptation in radiochemistry laboratories.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据