4.7 Article

Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 322, 期 -, 页码 254-262

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2016.02.065

关键词

Cu N-Codoped titanate nanotubes (TNTs); Visible-light-responsive; Enhanced photocatalytic degradation; Bisphenol A (BPA)

资金

  1. Ministry of Science and Technology [NSC 101-2221-E-007-084-MY3, NSC 99-2627-M-007-006]

向作者/读者索取更多资源

In this study, a rapid and effective microwave-assisted hydrothermal method was developed for the synthesis of Cu, N-codoped titanate nanotubes (Cu, N-TNTs) to enhance the photocatalytic degradation efficiency and rate of bisphenol A (BPA) under UV and visible light irradiations. The TNTs were first synthesized at 150 degrees C for 3 h under microwave heating conditions followed by the calcination at 450 degrees C in the presence of 6 wt% Cu ions and N-2/NH3 to fabricate Cu, N-TNTs composites. The Cu, N-TNTs exhibited excellent photocatalytic activity toward BPA degradation under UV and visible light irradiations. The X-ray photoelectron spectra indicated that Cu species in Cu, N-TNTs were mainly in zerovalent form and could serve as the electron donors as well as shuttling species to accelerate the photodegradation of BPA. In addition, the nitrogen atoms were incorporated into the anatase lattices to increase the visible light-responsive capability. The surface normalized reaction rate constants for BPA degradation were 4.3 and 1.5 times higher than those of Degussa P25 TiO2 under UV and visible light irradiations, respectively. The electron spin resonance spectra showed that Cu, N-codoped TNTs prolonged the generation of oxygen-containing radicals for at least 5 min, resulting in the significant enhancement of photodegradation efficiency and rate of BPA. Results obtained in this study open a new avenue by using simple and effective microwave-assisted hydrothermal method to fabricate low dimensional codoped TNTs which can be potentially applied in a wide variety of fields of purification, green chemistry and photocatalysis. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据