4.6 Article

beta 1-integrin-matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability

期刊

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0271678X17722108

关键词

Cerebral microvessel endothelium; beta 1-integrin; intracellular signaling; permeability; tight junction proteins

资金

  1. National Institutes of Health [NS 053716, NS 038710]
  2. Astellas Foundation for Research on Metabolic Disorders
  3. Mochida Memorial Foundation
  4. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS038710, R01NS053716] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Acutely following focal cerebral ischemia disruption of the microvessel blood-brain barrier allows transit of plasma proteins into the neuropil as edema formation that coincides with loss of microvessel endothelial beta 1-integrins. We extend previous findings to show that interference with endothelial beta 1-integrin-matrix adhesion by the monoclonal IgM Ha2/5 increases the permeability of primary cerebral microvascular endothelial cell monolayers through reorganization of claudin-5, occludin, and zonula occludens-1 (ZO-1) from inter-endothelial borders. Interference with beta 1-integrin-matrix adhesion initiates F-actin conformational changes that coincide with claudin-5 redistribution. beta 1-integrin-matrix interference simultaneously increases phosphorylation of myosin light chain (MLC), while inhibition of MLC kinase (MLCK) and Rho kinase (ROCK) abolishes the Ha2/5-dependent increased endothelial permeability by 6h after beta 1-integrin-matrix interference. These observations are supported by concordant observations in the cortex of a high-quality murine conditional beta 1-integrin deletion construct. Together they support the hypothesis that detachment of beta 1-integrins from abluminal matrix ligands increases vascular endothelial permeability through reorganization of tight junction (TJ) proteins via altered F-actin conformation, and indicate that the beta 1-integrin-MLC signaling pathway is engaged when beta 1-integrin detachment occurs. These findings provide a novel approach to the research and treatment of cerebral disorders where the breakdown of the blood-brain barrier accounts for their progression and complication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据