4.7 Article

Intracellular transcytosis of albumin in glomerular endothelial cells after endocytosis through caveolae

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 232, 期 12, 页码 3565-3573

出版社

WILEY
DOI: 10.1002/jcp.25817

关键词

albumin; early endosomes; exocytosis; glomerular endothelial cells; transcytosis

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) [24790862]
  2. Aid for Scientific Research [15K09278]
  3. Komei Nakayama Research Foundation of Tokyo Women's Medical University
  4. Grants-in-Aid for Scientific Research [24790862, 15K09278] Funding Source: KAKEN

向作者/读者索取更多资源

We previously described albumin endocytosis through caveolae in human renal glomerular endothelial cells (HRGECs). This suggested a new albumin transcytosis pathway, in addition to the fenestral pathway. As a next step, we investigated albumin transcytosis in HRGECs after caveolar endocytosis. HRGECs were incubated with Alexa Fluor 488-labeled bovine serum albumin from 0 to 360min. Next, markers for endosomes, endoplasmic reticulum (ER), golgi apparatus (GA), lysosomes, and proteasomes and Fc receptors, microtubules, and actin were monitored by immunofluorescence. Labeled albumin co-localization with endosomes was gradually and significantly increased and it was significantly higher than with the other markers at any timepoint. Albumin, placed on inside of the Transwell membrane, diffused through HRGEC monolayers during a 360min incubation period. This transportation of albumin through HRGECs was inhibited by methyl beta cyclodextrin (MBCD), a caveolae disrupting agent. MBCD also decreased albuminuria, causing decreased caveolin-1 (Cav-1) expression on glomerular capillaries, in puromycin aminonucleoside induced nephrotic mice. Albumin transcytosis depends on early endosomes, but not on other organelles, Fc receptors, or cytoskeletal components. Caveolae disruption prevented albumin transportation through HRGECs and decreased albuminuria in nephrotic mice. This newly described caveolae-dependent albumin pathway through glomerular endothelial cells is a potential pathogenetic mechanism for albuminuria, independent of the fenestrae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据