4.8 Article

Octahedral-based redox molecular sieve M-PKU-1: Isomorphous metal-substitution, catalytic oxidation of sec-alcohol and related catalytic mechanism

期刊

JOURNAL OF CATALYSIS
卷 352, 期 -, 页码 130-141

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcat.2017.05.007

关键词

Aluminoborates; Octahedral-based framework; Redox molecular sieve; Sec-alcohol oxidative dehydrogenation; H2O2 activation; Mechanism; Over-oxidation

资金

  1. National Natural Science Foundation of China [91222106, 21671028]
  2. Natural Science Foundation of Chongqing [2014jcyjA50036, 2016jcyjA0291]

向作者/读者索取更多资源

Octahedral-based redox molecular sieves M-PKU-1 (M=Cr, Fe) were synthesized by isomorphous metal-substitution and used as catalysts for catalytic dehydrogenation of sec-alcohols using H2O2 as oxidant. Various characterizations, such as X-ray diffraction Rietveld refinement and XPS spectrum, confirmed that transition metals were embedded successfully inside the PKU-1 framework with a high level (about similar to 50 atom %) and presented in the valence state of +3. Molecular probe analyzes suggested that Cr sites catalyzed the quick formation of active center dot OH radicals, however strongly suppressed the generation of superoxide center dot O-2(-) ions. Under the performed reaction conditions, 10%Cr-PKU-1 exhibited excellent catalytic performances (>99 % selectivity) and kept favorable recyclable stability. A hypothetical mechanism was proposed, which involved a Cr3+-Cr2+-Cr3+ circle when the oxidative dehydrogenation reaction happened. Furthermore, qualitative and quantitative analyzes were performed to illustrate the stepwise by-products generated in the probable pathway due to the over-oxidization, but the selectivity to the two proposed pathways seemed to be in equal portions and didn't have any obvious preference. Obviously, our preliminary results still merit further exploration; we believe however, they would provide helpful information to better understand the structure-activity relationship and the key function of Cr-PKU-1 in the catalytic activation of H2O2. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Chemistry, Physical

Robust PtRu catalyst regulated via cyclic electrodeposition for electrochemical production of cyclohexanol

Yifan Sun, Ye Lv, Wei Li, Jinli Zhang, Yan Fu

Summary: In this study, PtRu electrocatalysts were fabricated on carbon paper via cyclic electrodeposition for the electrocatalytic hydrogenation (ECH) of phenol. The Pt3Ru3 catalyst exhibited excellent activity and stability for the conversion of phenol to cyclohexanol at ambient temperature and various current densities. The in situ Raman spectroscopy and kinetic study revealed the hydrogenation mechanism of phenol over Pt3Ru3 in acidic electrolyte, providing an effective electrochemical strategy for the facile construction of durable electrode materials and efficient phenol hydrogenation.

JOURNAL OF CATALYSIS (2024)

Article Chemistry, Physical

Escalating the synergism on CdZnS via Ag2S/Cu2S co-catalysts: Boosts hydrogen evolution from water splitting under sunlight

Amir Shahzad, Khezina Rafiq, Muhammad Zeeshan Abid, Naseem Ahmad Khan, Syed Shoaib Ahmad Shah, Raed H. Althomali, Abdul Rauf, Ejaz Hussain

Summary: Photocatalytic hydrogen production through water splitting is an effective method for meeting future energy demands. In this study, researchers synthesized a 1 % Ag2S/Cu2S co-doped CdZnS catalyst and found that it can produce hydrogen at a higher rate. The co-doping of Ag2S and Cu2S in the CdZnS catalyst showed a synergistic effect, with Ag2S promoting oxidation reactions and Cu2S promoting reduction reactions.

JOURNAL OF CATALYSIS (2024)