4.6 Article

Improved specific thermomechanical properties of polyurethane nanocomposite foams based on castor oil and bacterial nanocellulose

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 134, 期 25, 页码 -

出版社

WILEY
DOI: 10.1002/app.44982

关键词

bacterial nanocellulose; foams; polyurethane; thermomechanical properties

向作者/读者索取更多资源

Bacterial nanocellulose (BNC) was used to synthesize polyurethane foams (PUFs) prepared from castor oil polyol and MDI diisocyanate using water as the blowing agent. The BNC reacted with the isocyanate, increasing the weight content of urethane hard segments (HS). It did not behave as a nucleation agent, forming a nanometric distribution of cells within the struts followed by a reduction of the apparent density (-7.6%) and a relevant increase of cell size in the growth direction (+37.9%). An alignment of the BNC parallel to the cell walls was observed, producing a nanocomposite with a higher reinforcement weight fraction in that area. At only 0.2 wt %, the BNC behaved as a nanostructured reinforcement, improving the specific compression modulus and strength by +4.67% and +23.6%, respectively, as well as the thermomechanical properties, with an improvement of the specific E' at 30 degrees C of +52.4%. (C) 2017 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据