4.7 Review

Emerging Roles of Mitochondrial Ribosomal Proteins in Plant Development

期刊

出版社

MDPI
DOI: 10.3390/ijms18122595

关键词

mitoribosomes; mitochondrial ribosomal proteins (mitoRPs); arabidopsis; ribosomal filter hypothesis; plant development; mutants

资金

  1. Conselleria d' Educacio of the Generalitat Valenciana (Spain) [GV/2009/058, AICO/2015]

向作者/读者索取更多资源

Mitochondria are the powerhouse of eukaryotic cells because they are responsible for energy production through the aerobic respiration required for growth and development. These organelles harbour their own genomes and translational apparatus: mitochondrial ribosomes or mitoribosomes. Deficient mitochondrial translation would impair the activity of this organelle, and is expected to severely perturb different biological processes of eukaryotic organisms. In plants, mitoribosomes consist of three rRNA molecules, encoded by the mitochondrial genome, and an undefined set of ribosomal proteins (mitoRPs), encoded by nuclear and organelle genomes. A detailed functional and structural characterisation of the mitochondrial translation apparatus in plants is currently lacking. In some plant species, presence of small gene families of mitoRPs whose members have functionally diverged has led to the proposal of the heterogeneity of the mitoribosomes. This hypothesis supports a dynamic composition of the mitoribosomes. Information on the effects of the impaired function of mitoRPs on plant development is extremely scarce. Nonetheless, several works have recently reported the phenotypic and molecular characterisation of plant mutants affected in mitoRPs that exhibit alterations in specific development aspects, such as embryogenesis, leaf morphogenesis or the formation of reproductive tissues. Some of these results would be in line with the ribosomal filter hypothesis, which proposes that ribosomes, besides being the machinery responsible for performing translation, are also able to regulate gene expression. This review describes the phenotypic effects on plant development displayed by the mutants characterised to date that are defective in genes which encode mitoRPs. The elucidation of plant mitoRPs functions will provide a better understanding of the mechanisms that control organelle gene expression and their contribution to plant growth and morphogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据