4.7 Article

Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 42, 期 4, 页码 2636-2647

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2016.07.009

关键词

High temperature proton exchange membrane; Fuel cell; Polybenzimidazole; Graphene oxide

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [TUBITAK 1001-214M301]
  2. TEKSIS (METU-Technopolis, TURKEY)

向作者/读者索取更多资源

In this study, phosphoric acid doped Polybenzimidazole/Graphene Oxide (PBI/GO) nano composite membranes were prepared by dispersion of various amounts of GO in PBI polymer matrix followed by phosphoric acid doping for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. The structure of the PBI/GO composite membranes was investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and by thermogravimetric analysis (TGA). The introduction of GO into the FBI polymer matrix helps to improve the acid doping, proton conductivity and acid leaching properties. The SEM analyses have proved the uniform and homogeneous distribution of GO in composite membranes. The composite membranes were tested in a single HT-PEMFC with a 5 cm(2) active area at 165 degrees C without humidification. HT-PEMFC tests show that PBI/ GO composite membrane with 2 wt. % GO content performed better than bare PBI membrane at non humidified condition. At ambient pressure and 165 degrees C, the maximum power density of the PBI/GO-1 membrane can reach 0.38 W/cm(2), and the current density at 0.6 V is up to 0.252 A/cm(2), with H-2/air. The results indicate the PBI/GO composite membranes could be utilized as the proton exchange membranes for HT-PEMFC. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据