4.7 Article

Electrical and optical properties of InSb/GaAs QDSC for photovoltaic

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 42, 期 30, 页码 19518-19524

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2017.05.204

关键词

Component; Quantum dot; Solar cell; Photovoltaic

向作者/读者索取更多资源

This paper focuses on the simulation and optimization of electrical and optical properties such as current density-voltage (J-V), external quantum efficiency (EQE) and the photoluminescence spectra (PL) of InSb/GaAs quantum dot solar cell (QDSC). The InSb QDs have been inserted in the intrinsic region of p-i-n GaAs solar cell. Our results have been shown that 30 InSb/GaAs QD layers provide a relative enhancement of 22.35% and 29.30% of the short-circuit current and the efficiency, respectively. With the same number of the QD layers, the absorption range edge of low energy photons has been extended from 900 to 1400 nm. The electrical features obtained for InSb/GaAs QDSC have been compared with those obtained for InAs/GaAs QDSC in goal to show the better structure. The PL spectra has been also compared with experimental result for the same structure. Moreover, the QDSC has been optimized with respect to the thickness of QDs. The optimal conversion efficiency of 10 QD layers is improved from 14.85% to 18.30% by increasing the thickness of the QDs from 5 nm to 20 nm. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据