4.7 Article

Surface energy fluxes in the Northeast Asia ecosystem: SEBS and METRIC models using Landsat satellite images

期刊

AGRICULTURAL AND FOREST METEOROLOGY
卷 214, 期 -, 页码 60-79

出版社

ELSEVIER
DOI: 10.1016/j.agrformet.2015.08.245

关键词

Intercomparison; Surface energy budget; Remote sensing; Eddy covariance; Evapotranspiration

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [NRF-2014M1A3A3A02034789]
  2. Higher Education Commission (HEC), Pakistan

向作者/读者索取更多资源

The reliable assessment of turbulent heat fluxes and evapotranspiration (ET) from the field to regional scales is fundamental to comprehending land-atmosphere interactions and water balance dynamics. In this study, we evaluated two single-source operational methodologies, the Surface Energy Balance System (SEBS) and Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC), to scrutinize the surface energy balance components using Landsat TM/ETM+ images collected between 2002 and 2013. Estimations from the models were compared with ground observations from two grassland and two cropland AsiaFlux tower sites. To examine model behaviors adequately, both SEBS and METRIC were parameterized using the same predictions of instantaneous and daily net radiation (R-N). The R-N estimations were quite promising; the ensemble averaged (from all sites) bias and root mean square error (RMSE) were within 39 W m(-2). In terms of the soil heat flux (G) and sensible heat flux (H), both models showed various contrasted outputs at the tower and spatial scales, yielding a maximum difference of 77 W m(-2). The estimated G from the albedo-based method (METRIC) had low bias and RMSE within 46 W m(-2), whereas that obtained from the fractional vegetation cover based method (SEBS) exceeded 125 Wm(-2). However, the SEBS model performed better for H estimations, yielded less bias and an RMSE (averaged) within 82 W m(-2), compared with errors of 102 W m(-2) obtained from METRIC. The slightly higher errors in METRIC were caused by its original design based on internal calibration, which lumped the maximum biases from other variables into the estimated H. The errors in G (SEBS) were almost equal to the errors in H (METRIC) but of the opposite sign. Because the latent heat flux is calculated as a rest-term, the errors in G and H compensate for each other. Therefore, both models performed similarly in consistently overestimating the latent heat flux (LE) and corresponding daily ET because of energy balance misclosure in the eddy covariance flux measurements. Three different closure approaches [least squares linear regression (REG), Bowen ratio (BR), and residual (RE) correction] were used, and both models had daily ET with less bias and RMSE (averaged) within 0.16 mm day(-1) and 0.62 mm day(-1), respectively, using REG. Furthermore, a sensitivity analysis suggested that corrections of radiometric to absolute surface temperature are essentially required only for SEBS, whereas the accurate calibration of cold and hot end-points is important for METRIC implementation. These evaluations promote better understanding of the strengths and weaknesses of both models for mapping the surface energy balance at the regional scale and are a step toward an integrated methodology for a wide range of heterogeneous ecosystems. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Agronomy

A geo-informatics approach for estimating water resources management components and their interrelationships

Umar Waqas Liaqat, Usman Khalid Awan, Matthew Francis McCabe, Minha Choi

AGRICULTURAL WATER MANAGEMENT (2016)

Article Environmental Sciences

Hydrological modeling to simulate streamflow under changing climate in a scarcely gauged cryosphere catchment

Muhammad Azmat, Minha Choi, Tae-Woong Kim, Umar Waqas Liaqat

ENVIRONMENTAL EARTH SCIENCES (2016)

Article Water Resources

A SWAT modeling approach to assess the impact of climate change on consumptive water use in Lower Chenab Canal area of Indus basin

Usman Khalid Awan, Umar Waqas Liaqat, Minha Choi, Ali Ismaeel

HYDROLOGY RESEARCH (2016)

Article Agronomy

A new concept of irrigation response units for effective management of surface and groundwater resources: a case study from the multi-country Fergana Valley, Central Asia

Usman Khalid Awan, Mirzakhayot Ibrakhimov, Bogachan Benli, John P. A. Lamers, Umar Waqas Liaqat

IRRIGATION SCIENCE (2017)

Article Environmental Sciences

Impacts of changing climate and snow cover on the flow regime of Jhelum River, Western Himalayas

Muhammad Azmat, Umar Waqas Liaqat, Muhammad Uzair Qamar, Usman Khalid Awan

REGIONAL ENVIRONMENTAL CHANGE (2017)

Article Engineering, Civil

Recent Climate Trends and Drought Behavioral Assessment Based on Precipitation and Temperature Data Series in the Songhua River Basin of China

Muhammad Imran Khan, Dong Liu, Qiang Fu, Shuhua Dong, Umar Waqas Liaqat, Muhammad Abrar Faiz, Yuxiang Hu, Qaisar Saddique

WATER RESOURCES MANAGEMENT (2016)

Article Water Resources

A SWAT modeling approach to assess the impact of climate change on consumptive water use in Lower Chenab Canal area of Indus basin

Usman Khalid Awan, Umar Waqas Liaqat, Minha Choi, Ali Ismaeel

HYDROLOGY RESEARCH (2016)

Article Agronomy

Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach

Muhammad Sarfraz Khan, Umar Waqas Liaqat, Jongjin Baik, Minha Choi

AGRICULTURAL AND FOREST METEOROLOGY (2018)

Article Agronomy

Understanding surface water-groundwater interactions for managing large irrigation schemes in the multi-country Fergana valley, Central Asia

Mirzakhayot Ibrakhimov, Usman Khalid Awan, Biju George, Umar Waqas Liaqat

AGRICULTURAL WATER MANAGEMENT (2018)

Article Nuclear Science & Technology

Molecular dynamics simulations of the coupled effects of strain and temperature on displacement cascades in α-zirconium

Qurat-ul-ain Sahi, Yong-Soo Kim

NUCLEAR ENGINEERING AND TECHNOLOGY (2018)

Article Water Resources

Spatio-temporal distribution of actual evapotranspiration in the Indus Basin Irrigation System

Umar Waqas Liaqat, Minha Choi, Usman Khalid Awan

HYDROLOGICAL PROCESSES (2015)

Article Geography

A phenology based geo-informatics approach to map land use and land cover (2003-2013) by spatial segregation of large heterogenic river basins

Fazlullah Akhtar, Usman Khalid Awan, Bernhard Tischbein, Umar Waqas Liaqat

APPLIED GEOGRAPHY (2017)

Article Agronomy

Long-term summer warming reduces post-fire carbon dioxide losses in an arctic heath tundra

Wenyi Xu, Bo Elberling, Per Lennart Ambus

Summary: The frequency and extent of wildfires in the Arctic have been increasing due to climate change. In this study, researchers conducted experiments in West Greenland to investigate the long-term impacts of climate warming on post-fire carbon dioxide exchange in arctic tundra ecosystems. They found that fire increased soil organic phosphorus concentrations and burned areas remained a net CO2 source five years after the fire. However, with four to five years of summer warming, the burned areas turned into a net CO2 sink.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

Quantifying the drivers of terrestrial drought and water stress impacts on carbon uptake in China

Yuanhang Yang, Jiabo Yin, Shengyu Kang, Louise J. Slater, Xihui Gu, Aliaksandr Volchak

Summary: This study investigates the impacts of water and heat stress on carbon uptake in China and explores the driving mechanisms of droughts using a machine learning model. The results show that droughts are mostly driven by atmospheric dryness, with precipitation, relative humidity, and temperature playing dominant roles. Water and heat stress have negative impacts on carbon assimilation, and drought occurrence is projected to increase significantly in the future. Improving ecosystem resilience to climate warming is crucial in mitigating the negative effects of droughts on carbon uptake.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

Evapotranspiration partitioning based on underlying conductance in a complex tree-grass orchard ecosystem in the humid area of southern China

Ningbo Cui, Shunsheng Zheng, Shouzheng Jiang, Mingjun Wang, Lu Zhao, Ziling He, Yu Feng, Yaosheng Wang, Daozhi Gong, Chunwei Liu, Rangjian Qiu

Summary: This study proposes a method to partition evapotranspiration (ET) into its components in agroforestry systems. The method is based on water-carbon coupling theory and flux conservation hypothesis. The results show that the partitioned components agree well with measurements from other sensors. The study also finds that atmospheric evaporation demand and vegetation factors greatly influence the components of ET, and increased tree leaf area limits understory grass transpiration.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

Stronger control of surface conductance by soil water content than vapor pressure deficit regulates evapotranspiration in an urban forest in Beijing, 2012-2022

Xinhao Li, Tianshan Zha, Andrew Black, Xin Jia, Rachhpal S. Jassal, Peng Liu, Yun Tian, Chuan Jin, Ruizhi Yang, Feng Zhang, Haiqun Yu, Jing Xie

Summary: With the rapid increase of urbanization, evapotranspiration (ET) in urban forests has become increasingly important in urban hydrology and climate. However, there is still a large uncertainty regarding the factors that regulate ET in urban areas. This study investigates the temporal variations of ET in an urban forest park in Beijing using the eddy-covariance technique. The results show that daily ET is close to zero during winter but reaches 3-6 mm day-1 in summer. Daily ET increases with vapor pressure deficit (VPD) and soil water content (SWC). Monthly ET increases linearly with normalized difference vegetation index and shows a strong correlation with surface conductance (gs), while exhibiting saturated responses to increasing monthly precipitation (PPT). Annual ET ranges from 326 to 566 mm, and soil water replenishment through PPT from the previous year is responsible for the generally higher monthly ET in spring relative to PPT. Biotic factors and PPT seasonality play essential roles in regulating ET at different scales.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

Precipitation consistently promotes, but temperature oppositely drives carbon fluxes in temperate and alpine grasslands in China

Zhaogang Liu, Zhi Chen, Meng Yang, Tianxiang Hao, Guirui Yu, Xianjin Zhu, Weikang Zhang, Lexin Ma, Xiaojun Dou, Yong Lin, Wenxing Luo, Lang Han, Mingyu Sun, Shiping Chen, Gang Dong, Yanhong Gao, Yanbin Hao, Shicheng Jiang, Yingnian Li, Yuzhe Li, Shaomin Liu, Peili Shi, Junlei Tan, Yakun Tang, Xiaoping Xin, Fawei Zhang, Yangjian Zhang, Liang Zhao, Li Zhou, Zhilin Zhu

Summary: This study investigates the responses of temperate grassland (TG) and alpine grassland (AG) to climate change by studying carbon (C) fluxes across different regions in China. The results reveal that water factors consistently increase C fluxes, while temperature factors have opposite effects on TG and AG. The study enhances our understanding of C sinks and grassland sensitivity to climate change.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

Mapping planted forest age using LandTrendr algorithm and Landsat 5-8 on the Loess Plateau, China

Peng Li, Huijie Li, Bingcheng Si, Tao Zhou, Chunhua Zhang, Min Li

Summary: This study mapped the distribution of forest age on the Chinese Loess Plateau using the LandTrendr algorithm. The results show that the LT algorithm is a convenient, efficient, and reliable method for identifying forest age. The findings have important implications for assessing and quantifying biomass and carbon sequestration in afforestation efforts on the Chinese Loess Plateau.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Review Agronomy

Mechanisms and modelling approaches for excessive rainfall stress on cereals: Waterlogging, submergence, lodging, pests and diseases

Yean-Uk Kim, Heidi Webber, Samuel G. K. Adiku, Rogerio de S. Noia Junior, Jean-Charles Deswarte, Senthold Asseng, Frank Ewert

Summary: As climate change is expected to increase the intensity and frequency of extreme weather events, it is crucial to assess their impact on cropping systems and explore adaptation options. Process-based crop models (PBCMs) have improved in simulating the impacts of major extreme weather events, but still struggle to reproduce low crop yields under wet conditions. This article provides an overview of the yield-loss mechanisms of excessive rainfall in cereals and the associated modelling approaches, aiming to guide improvements in PBCMs.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

Climatic drivers of litterfall production and its components in two subtropical forests in South China: A 14-year observation

Xiaodong Liu, Yingjie Feng, Xinyu Zhao, Zijie Cui, Peiling Liu, Xiuzhi Chen, Qianmei Zhang, Juxiu Liu

Summary: Understanding the impact of climate on litterfall production is crucial for simulating nutrient cycling in forest ecosystems. This study analyzed a 14-year litterfall dataset from two subtropical forests in South China and found that litterfall was mainly influenced by wind speed during the wet season and by temperature during the dry season. These findings have potential significance in improving our understanding of carbon and nutrient cycling in subtropical forest ecosystems under climate change conditions.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

SIF-based GPP modeling for evergreen forests considering the seasonal variation in maximum photochemical efficiency

Ruonan Chen, Liangyun Liu, Zhunqiao Liu, Xinjie Liu, Jongmin Kim, Hyun Seok Kim, Hojin Lee, Genghong Wu, Chenhui Guo, Lianhong Gu

Summary: Solar-induced chlorophyll fluorescence (SIF) has the potential to estimate gross primary production (GPP), but the quantitative relationship between them is not constant. In this study, a mechanistic model for SIF-based GPP estimation in evergreen needle forests (ENF) was developed, considering the seasonal variation in a key parameter of the model. The GPP estimates from this model were more accurate compared to other benchmark models, especially in extreme conditions.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

Constructing a high-precision precipitation dataset on the data-limited Qinghai-Tibet Plateau

Jingyi Zhu, Yanzheng Yang, Nan Meng, Ruonan Li, Jinfeng Ma, Hua Zheng

Summary: This study developed a random forest model using climate station and satellite data to generate high-precision precipitation datasets for the Qinghai-Tibet Plateau. By incorporating multisource satellite data, the model achieved a significant enhancement in precipitation accuracy and showed promising results in regions with limited meteorological stations and substantial spatial heterogeneity in precipitation patterns.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

A multi-objective optimization approach to simultaneously halve water consumption, CH4, and N2O emissions while maintaining rice yield

Yulin Yan, Youngryel Ryu, Bolun Li, Benjamin Dechant, Sheir Afgen Zaheer, Minseok Kang

Summary: Sustainable rice farming practices are urgently needed to meet increasing food demand, cope with water scarcity, and mitigate climate change. Traditional farming methods that prioritize a single objective have proven to be insufficient, while simultaneously optimizing multiple competing objectives remains less explored. This study optimized farm management to increase rice yield, reduce irrigation water consumption, and tackle the dilemma of reducing GHG emissions. The results suggest that the optimized management can maintain or even increase crop yield, while reducing water demand and GHG emissions by more than 50%.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

Experimental and model-based comparison of wind tunnel and inverse dispersion model measurement of ammonia emission from field-applied animal slurry

Sasha D. Hafner, Jesper N. Kamp, Johanna Pedersen

Summary: This study compared micrometeorological and wind tunnel measurements using a semi-empirical model to understand wind tunnel measurement error. The results showed differences in emission estimates between the two methods, but the ALFAM2 model was able to reproduce emission dynamics for both methods when considering differences in mass transfer. The study provides a template for integrating and comparing measurements from different methods, suggesting the use of wind tunnel measurements for model evaluation and parameter estimation.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

Impacts of record-breaking compound heatwave and drought events in 2022 China on vegetation growth

Wenfang Xu, Wenping Yuan, Donghai Wu, Yao Zhang, Ruoque Shen, Xiaosheng Xia, Philippe Ciais, Juxiu Liu

Summary: In the summer of 2022, China experienced record-breaking heatwaves and droughts, which had a significant impact on plant growth. The study also found that heatwaves were more critical than droughts in limiting vegetation growth.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

Tracking photosynthetic phenology using spectral indices at the leaf and canopy scales in temperate evergreen and deciduous trees

Jiaqi Guo, Xiaohong Liu, Wensen Ge, Liangju Zhao, Wenjie Fan, Xinyu Zhang, Qiangqiang Lu, Xiaoyu Xing, Zihan Zhou

Summary: Vegetation photosynthetic phenology is an important indicator for understanding the impacts of climate change on terrestrial carbon cycle. This study evaluated and compared the abilities of different spectral indices to model photosynthetic phenology, and found that NIRv and PRI are effective proxies for monitoring photosynthetic phenology.

AGRICULTURAL AND FOREST METEOROLOGY (2024)

Article Agronomy

Impacts of heat and drought on the dynamics of water fluxes in a temperate deciduous forest from 2012 to 2020

Arango Ruda Elizabeth, M. Altaf Arain

Summary: Temperate deciduous forests have significant impacts on regional and global water cycles. This study examined the effects of climate change and extreme weather events on the water use and evapotranspiration of a temperate deciduous forest in eastern North America. The results showed that photosynthetically active radiation and air temperature were the primary drivers of evapotranspiration, while vapor pressure deficit regulated water use efficiency. The study also found a changing trend in water use efficiency over the years, influenced by extreme weather conditions.

AGRICULTURAL AND FOREST METEOROLOGY (2024)