4.7 Article

The importance of the non-active site and non-periodical structure located histidine residue respect to the structure and function of exo-inulinase

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2017.01.130

关键词

Exo-inulinase; H192A mutant; Thermo-stabilities; Catalytic performance; Molecular dynamics

向作者/读者索取更多资源

Here, we have studied the role of a histidine residue with the lowest solvent accessibility among other histidine residues at the end of a short connecting structure ((189)AELH(192)) of the catalytic domain of the exo-inulinase through creation of H192A mutant. Site-directed mutagenesis method was applied to create the mutant enzyme. Molecular dynamics (MD) simulations, spectroscopic, calorimetric and kinetics analysis were used to study the structural and functional consequences of His192 substitution. Accordingly, the thermo-stabilities and catalytic performance were decreased upon H192A mutation. In silico and experimental approaches evidently confirm that His192 residue of exo-inulinase possesses structural and functional importance regardless of the lack of direct interaction with the substrate or involvement in the catalytic activity of exo-inulinase. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据