4.6 Article

Evaluation of component repair using direct metal deposition from scanned data

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-017-1455-y

关键词

Direct metal deposition; Repair; Reverse engineering; Additive manufacturing; Tool steel

资金

  1. National Science Foundation [CMMI-1547042, CMMI 1625736]
  2. Intelligent Systems Center, Center for Aerospace Manufacturing Technologies
  3. Material Research Center at Missouri ST

向作者/读者索取更多资源

In this work, the repair volume of AISI H13 tool steel samples with hemisphere-shaped defects was reconstructed through reverse engineering and the samples were repaired by laser-aided direct metal deposition (DMD) using Co-based alloys powder as the filler material. Microstructure characterization and elemental distribution of deposits were analyzed using optical microscope (OM), scanning electron microscope (SEM), and energy dispersive spectrometry (EDS). Mechanical properties of repaired samples were evaluated via tensile test and microhardness measurement. The experiment showed that a gap between deposits and substrate exists if only employing the tool path generated from the reconstructed repair volume but the gap can be removed by depositing an extra layer covering that region. Microstructure and tensile test confirmed strong metallurgical bond in the interface. Defect-free columnar structure dominated the deposits near the interface while other regions of deposits consisted of dendrite structure with interdendritic eutectics. The tensile test showed that the repaired samples have a higher ultimate tensile strength (UTS) and lower ductility compared with those of base metal. Fractography from tensile test showed repaired samples fractured brittlely at the deposits section with cracking propagating along the grain boundaries. The hardness measurement showed that the deposited layers have a much higher hardness in comparison to the substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据