4.7 Article

Real-Time Energy Management Strategy Based on Velocity Forecasts Using V2V and V2I Communications

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2016.2580318

关键词

Hybrid electric vehicles; velocity prediction; V2I communication; V2V communication; equivalent consumption minimization strategy (ECMS)

资金

  1. National High Technology Research and Development Program of China
  2. Beijing Institute of Technology, Beijing, China
  3. Texas AAMP
  4. M University College Station, TX, USA

向作者/读者索取更多资源

The performance of energy management in hybrid electric vehicles is highly dependent on the forecasted velocity. To this end, a new velocity-prediction approach utilizing the concept of chaining neural network (CNN) is introduced. This velocity forecasting approach is subsequently used as the basis for an equivalent consumption minimization strategy (ECMS). The CNN is used to predict the velocity over different temporal horizons, exploiting the information provided through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication channels. In addition, a new adaptation law for the so-called equivalent factor (EF) in ECMS is devised to investigate the effects of future velocity on fuel economy and to impose charge sustainability. Compared with traditional adaptation law, this paper considers the impact of predicted velocity on EF. The control objective is to improve the fuel economy relative to the ECMS without considering predicted velocity. Finally, simulations are conducted in three cases over different prediction horizons to demonstrate the performance of the proposed velocity-prediction method and ECMS with adaptation law. Simulation results confirm that ECMS with EF adjusted by the proposed adaptation law produces between 0.2% and 5% improvements in fuel economy relative to ECMS with traditional adaptation law. In addition, better charge sustainability is achieved as well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据