4.7 Article

Soil Moisture Estimation by SAR in Alpine Fields Using Gaussian Process Regressor Trained by Model Simulations

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2017.2687421

关键词

Gaussian process regression (GPR); grassland; mountain areas; scattering models; soil moisture retrieval; synthetic aperture radar (SAR)

资金

  1. Provincia Autonoma di Bolzano
  2. Alto Adige/Sud Tirol
  3. Ripartizione Diritto allo Studio
  4. Universita e Ricerca Scientifica through the Project HiRe-sAlp
  5. Special Research Fund of the Province of Bolzano through the Project MONALISA
  6. Swiss National Science Foundation [PP00P2-150593]
  7. HyperSwissNet Project of the Swiss University Conference
  8. ETH Board

向作者/读者索取更多资源

In this paper, we address the problem of retrieving soil moisture over a grassland alpine area from Synthetic Aperture Radar (SAR) data using a statistical algorithm trained by simulations of a physical model. A time series of C-band VV-polarized Wide Swath images acquired by Envisat Advanced SAR (ASAR) in the snow-free periods of 2010 and 2011 was simulated using a discrete radiative transfer model (RTM). The test area was located in the Mazia valley, South Tyrol (Italy), where the main land types are meadows and pastures. Soil moisture was collected from five meteorological stations, two of which situated in meadows and the rest in pastures. The smallest and the highest RMSEs of the RTM simulations were 0.78 dB and 1.91 dB, respectively. After backscattering simulation, the top soil moisture was estimated using Gaussian Process Regression (GPR). GPR was trained with the backscatter model simulations (including terrain features) for 2010, and then used to predict moisture from radar observations acquired in 2011. The relative importance of different input features was also assessed. The RMSE of the predicted soil moisture for the largest training data set (including aspect as a terrain feature) was 5.6% Vol. and the corresponding correlation coefficient was 0.84.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据