4.6 Article Proceedings Paper

Short-term geomorphological evolution of proglacial systems

期刊

GEOMORPHOLOGY
卷 287, 期 -, 页码 3-28

出版社

ELSEVIER
DOI: 10.1016/j.geomorph.2017.01.037

关键词

Paraglacial; Periglacial; Permafrost; Glacier; Geomorphology; Landform; Meltwater

资金

  1. DigitalGlobe Foundation

向作者/读者索取更多资源

Proglacial systems are amongst the most rapidly changing landscapes on Earth, as glacier mass loss, permafrost degradation and more episodes of intense rainfall:progress with climate change. This review addresses the urgent need to quantitatively define proglacial systems not only in terms of spatial extent but also in terms of functional processes. It firstly provides a critical appraisal of prevailing conceptual models of proglacial systems, and uses this to justify compiling data on rates of landform change in terms of planform, horizontal motion, elevation changes and sediment budgets. These data permit us to produce novel summary conceptual diagrams that consider proglacial landscape evolution in terms of a balance of longitudinal and lateral water and sediment fluxes. Throughout, we give examples of newly emerging datasets and data processing methods because these have the potential to assist with the issues of: (i) a lack of knowledge of proglacial systems within high-mountain, arctic and polar regions, (ii) considerable inter- and intra-catchment variability in the geomorphology and functioning of proglacial systems, (iii) problems with the magnitude of short-term geomorphological changes being at the threshold of detection, (iv) separating short-term variability from longer-term trends, and (v) of the representativeness of plot-scale field measurements for regionalisation and for upscaling. We consider that understanding of future climate change effects on proglacial systems requires holistic process-based modelling to explicitly consider feedbacks and linkages, especially between hillslope and valley-floor components. Such modelling must be informed by a new generation of repeated distributed topographic surveys to detect and quantify short-term geomorphological changes. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据