4.7 Article

Prediction of vaccine candidates against Pseudomonas aeruginosa: An integrated genomics and proteomics approach

期刊

GENOMICS
卷 109, 期 3-4, 页码 274-283

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygeno.2017.05.001

关键词

Pseudomonas aeruginosa; Reverse vaccinology; Peptide vaccine; Epitope prediction

向作者/读者索取更多资源

Pseudomonas aeruginosa is among top critical nosocomial infectious agents due to its persistent infections and tendency for acquiring drug resistance mechanisms. To date, there is no vaccine available for this pathogen. We attempted to exploit the genomic and proteomic information of P. aeruginosa though reverse-vaccinology approaches to unveil the prospective vaccine candidates. P. aeruginosa strain PAO1 genome was subjected to sequential prioritization approach following genomic, proteomics and structural analyses. Among, the predicted vaccine candidates: surface components of antibiotic efflux pumps (Q9HY88, PA2837), chaperone-usher pathway components (CupC2, CupB3), penicillin binding protein of bacterial cell wall (PBP1a/mrcA), extracellular component of Type 3 secretory system (PscC) and three uncharacterized secretory proteins (PA0629, PA2822, PA0978) were identified as potential candidates qualifying all the set criteria. These proteins were then analyzed for potential immunogenic surface exposed epitopes. These predicted epitopes may provide a basis for development of a reliable subunit vaccine against P. aeruginosa. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据