4.6 Article

lncl33b, a novel, long non-coding RNA, regulates bovine skeletal muscle satellite cell proliferation and differentiation by mediating miR-133b

期刊

GENE
卷 630, 期 -, 页码 35-43

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.gene.2017.07.066

关键词

Bovine tissue; lncl33b; Microrna-133b; Myogenesis; Skeletal muscle satellite cells

资金

  1. National Natural Science Foundation of China [31501938, 31572380]
  2. Major Basic Research Program of Science and Technology Department of Inner Mongolia Autonomous Region [20130902]
  3. National Natural Science Foundation of Tianjin [15JCZDJC33700]

向作者/读者索取更多资源

The proliferation and differentiation of skeletal muscle satellite cells is regulated by multiple regulatory factors including non-coding RNAs. It has been reported that miR-133b regulates myogenesis. In this study, we detected a novel lncRNA, lnc133b, which is completely complemented by mature miR-133b, indicating that lnc133b may regulate the expression of miR-133b by sponge miR-133b. A luciferase report assay confirmed that lnc133b interacts with miR-133b in regions complemented by miR-133b. We successfully constructed lnc133b gain/loss-of-function cell models by infecting LV-lnc133b and transfecting si-lnc133b into satellite cells. Results of quantitative real-time polymerase chain reaction (qRT-PCR) and 5-ethynyl-2'-deoxyuridine (EdU) assays showed that overexpression or inhibition of lnc133b could promote the proliferation or inhibition of satellite cell differentiation. The qRT-PCR results also showed that lnc133b negatively regulates miR-133b expression and a Western blot assay showed that lnc133b positively regulates IGF1R expression, indicating that the lnc133b/miR-133b/IGF1R axis is a potential pathway for promoting satellite cell proliferation and repressing their differentiation through the ceRNA mechanism. Building on the findings of previous reports, we constructed the lnc133b/miR-133b/FGFR1 & PP2AC pathway to improve the lnc133b regulation network regulating the proliferation and differentiation of satellite cells. The current study provides a new perspective for understanding the mechanism regulating satellite cell proliferation and differentiation through the interaction of miR-133b and lnc133b.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据