4.7 Article

Numerical investigation of heavy fuel droplet-particle collisions in the injection zone of a Fluid Catalytic Cracking reactor, Part I: Numerical model and 2D simulations

期刊

FUEL PROCESSING TECHNOLOGY
卷 156, 期 -, 页码 317-330

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.fuproc.2016.09.014

关键词

VOF; FCC; Droplet; Particle; Collisions; Cracking

资金

  1. Marie Curie Fellowship (FP7-PEOPLE-IEF) - European Commission [329500]

向作者/读者索取更多资源

The present paper investigates the collisions between heavy gasoil droplets and solid catalytic particles taking place at conditions realized in Fluid Catalytic Cracking reactors (FCC). The computational model utilizes the Navier-Stokes equations.along with the energy conservation and transport of species equations. The VOF methodology is used in order to track the liquid-gas interface, while a dynamic local grid refinement technique is adopted, so that high accuracy is achieved with a relative low computational cost. Phase-change phenomena (evaporation of the heavy gasoil droplet), as well as catalytic cracking surface reactions are taken into account. Physical properties of heavy and light molecular weight hydrocarbons are modelled by representative single component species, while a 2-lump scheme is proposed for the catalytic cracking reactions. The numerical model is firstly validated for the case of a single liquid droplet evaporation inside a hot gaseous medium and impingement onto a.flat wall for droplet heating and film boiling conditions. Afterwards, it is utilized for the prediction of singledroplet-catalyst collisions inside the FCC injection zone. The numerical results indicate that droplets of similar size to the catalytic particles tend to be levitated more easily by hot catalysts, thus resulting in higher cracking reaction rates/cracking product yield, and limited possibility for liquid pore blocking. For larger sized droplets, the corresponding results indicate that the production of cracking products is not favored, while solid-liquid contact increases. Hotter catalysts promote catalytic cracking reactions and droplet levitation over the catalytic particle, owed to the formation of a thin vapour layer between the liquid and the solid particle. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据