4.4 Article

Electrochemical Properties of Al-based Solid Solutions Alloyed by Element Mg, Ga, Zn and Mn under the Guide of First Principles

期刊

FUEL CELLS
卷 17, 期 5, 页码 723-729

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/fuce.201600092

关键词

Aluminum Air Battery; Aluminum Anode; Electrochemical Performance; Molecular Simulation; Utilization Ratio

向作者/读者索取更多资源

Molecular simulation method was firstly used for analyzing the energy of aluminum alloy systems alloyed by Mg, Ga, Zn and Mn. Based on the analyses, Al-Mg, Al-Ga, Al-Zn, Al-Mn alloys were metallurgically prepared. The structures, electrochemical activities and utilization ratios were characterized by X-ray diffraction patterns (XRD), anodic polarization measurement and galvanostatic discharge. The calculated energies of the aluminum alloy systems increase in the following order: Al< Al-Mn < Al-Mg < Al-Zn < Al-Ga. The absolute values of the open circuit potentials of the alloys measured in alkaline solution rank in the following orders: phi(Al-Ga alloy) > phi(Al-Zn alloy) > phi(Al-Mg alloy) > phi(Al-Mn alloy) and the order is consistent with the calculated energies. The results indicate that molecular simulation based on the first-principles is a useful method in the alloying design and thermodynamic performance prediction. Alloy additives Zn and Ga effectively change the open circuit potential of metal aluminum to a more negative potential. In addition, alloy additive Zn increases the charge transfer resistance of AlAl3+, which decreases the discharge current density. Alloy additive Mg diminishes the grain size of the alloy and notably enhances the discharge current density. Alloy additive Mn improves the utilization ratio remarkably when discharging in alkaline solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据