4.7 Article

Physical interaction between the MAPK Slt2 of the PKC1-MAPK pathway and Grx3/Grx4 glutaredoxins is required for the oxidative stress response in budding yeast

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 103, 期 -, 页码 107-120

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2016.12.023

关键词

Signalling; Glutaredoxins; MAPK; Oxidative stress; PKC1 pathway; Budding yeast; Iron; Cell survival

资金

  1. Spanish Ministerio de Economia y Competitividad [BFU2012-31407]

向作者/读者索取更多资源

This study demonstrates that both monothiol glutaredoxins Grx3 and Grx4 physically interact with the MAPK Slt2 forming a complex involved in the cellular response to oxidative stress. The simultaneous absence of Grx3 and Grx4 provokes a serious impairment in cell viability, Slt2 activation and Rlm1 transcription in response to oxidative stress. Both in vivo and in vitro results clearly show that Slt2 can independently bind either Grx3 or Grx4 proteins. Our results suggest that Slt2 form iron/sulphur bridged clusters with Grx3 and Grx4. For the assembly of this complex, cysteines of the active site of each Grx3/4 glutaredoxins, glutathione and specific cysteine residues from Slt2 provide the ligands. One of the ligands of Slt2 is required for its dimerisation upon oxidative treatment and iron repletion. These interactions are relevant for the oxidative response, given that mutants in the cysteine ligands identified in the complex show a severe impairment of both cell viability and Slt2 phosphorylation upon oxidative stress. Grx4 is the relevant glutaredoxin that regulates Slt2 phosphorylation under oxidative conditions precluding cell survival. Our studies contribute to extend the functions of both monothiol glutaredoxins to the regulation of a MAPK in the context of the oxidative stress response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据