4.7 Article

Assessing the resilience of Norway spruce forests through a model-based reanalysis of thinning trials

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 388, 期 -, 页码 3-12

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.foreco.2016.11.030

关键词

Climate change; Disturbance; Recovery; Engineering resilience; Picea abies, iLand

类别

资金

  1. Austrian Climate Research Program [ACRP5-MOCCA-KR12AC5K01104]
  2. European Commission's Marie Curie Career Integration Grant [PCIG12-GA-2012-334104]
  3. Austrian Science Fund (FWF) through START grant [Y895-B25]

向作者/读者索取更多资源

As a result of a rapidly changing climate the resilience of forests is an increasingly important property for ecosystem management. Recent efforts have improved the theoretical understanding of resilience, yet its operational quantification remains challenging. Furthermore, there is growing awareness that resilience is not only a means to addressing the consequences of climate change but is also affected by it, necessitating a better understanding of the climate sensitivity of resilience. Quantifying current and future resilience is thus an important step towards mainstreaming resilience thinking into ecosystem management. Here, we present a novel approach for quantifying forest resilience from thinning trials, and assess the climate sensitivity of resilience using process-based ecosystem modeling. We reinterpret the wide range of removal intensities and frequencies in thinning trials as an experimental gradient of perturbation, and estimate resilience as the recovery rate after perturbation. Our specific objectives were (i) to determine how resilience varies with stand and site conditions, (ii) to assess the climate sensitivity of resilience across a range of potential future climate scenarios, and (iii) to evaluate the robustness of resilience estimates to different focal indicators and assessment methodologies. We analyzed three long-term thinning trials in Norway spruce (Picea abies (L.) Karst.) forests across an elevation gradient in Austria, evaluating and applying the individual-based process model iLand. The resilience of Norway spruce was highest at the montane site, and decreased at lower elevations. Resilience also decreased with increasing stand age and basal area. The effects of climate change were strongly context-dependent: At the montane site, where precipitation levels were ample even under climate change, warming increased resilience in all scenarios. At lower elevations, however, rising temperatures decreased resilience, particularly at precipitation levels below 750800 mm. Our results were largely robust to different focal variables and resilience definitions. Based on our findings management can improve the capacity to recover from partial disturbances by avoiding overmature and overstocked conditions. At increasingly water limited sites a strongly decreasing resilience of Norway spruce will require a shift towards tree species better adapted to the expected future conditions. (C) 2016 Elsevier B.V. All rights reserved:

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据