4.3 Article

The pelagic habitat analysis module for ecosystem-based fisheries science and management

期刊

FISHERIES OCEANOGRAPHY
卷 26, 期 3, 页码 316-335

出版社

WILEY
DOI: 10.1111/fog.12194

关键词

Bigeye Tuna; decision support system; ecological modeling; ecosystem-based fisheries management; GIS; satellite remote sensed data; Skipjack Tuna; spatial analysis; thresher shark; Tropical Tuna; Yellowfin Tuna

资金

  1. National Aeronautics and Space Administration (NASA) of the USA
  2. Applied Science Program, ROSES solicitation Decision Support through Earth Science Research Results [NNH07ZDA001N-DEC, 07-DEC07-0107]
  3. National Science Foundation (NSF) Coupled Humans and Natural Systems program [1010280]
  4. Directorate For Geosciences [1010280] Funding Source: National Science Foundation

向作者/读者索取更多资源

We have developed a set of tools that operate within an aquatic geographic information system to improve the accessibility, and usability of remote-sensed satellite and computer-modeled oceanographic data for marine science and ecosystem-based management. The tools form the Pelagic Habitat Analysis Module (PHAM), which can be applied as a modeling platform, an investigative aid in scientific research, or utilized as a decision support system for marine ecological management. Applications include fisheries, marine biology, physical and biological oceanography, and marine spatial management. The GIS provides a home for diverse data types and automated tools for downloading remote sensed and global circulation model data. Within the GIS environment, PHAM provides a framework for seamless interactive four-dimensional visualization, for matching between disparate data types, for flexible statistic or mechanistic model development, and for dynamic application of user developed models for habitat, density, and probability predictions. Here we describe PHAM in the context of ecosystem-based fisheries management, and present results from case study projects which guided development. In the first, an analysis of the purse seine fishery for tropical tuna in the eastern Pacific Ocean revealed oceanographic drivers of the catch distribution and the influence of climate-driven circulation patterns on the location of fishing grounds. To support management of the Common Thresher Shark (Alopias vulpinus) in the California Current Ecosystem, a simple empirical habitat utilization model was developed and used to dynamically predict the seasonal range expansion of common thresher shark based on oceanographic conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据