4.7 Article

An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 87, 期 -, 页码 335-362

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2017.06.021

关键词

Gray level co-occurrence matrix; Cuckoo search algorithm; Color images; Multilevel thresholding; Image segmentation

向作者/读者索取更多资源

Image thresholding is a process that separates particular object within an image from their background. An optimal thresholding technique can be taken as a single objective optimization task, where computation and obtaining a solution can become inefficient, especially at higher threshold levels. In this paper, a new and efficient color image multilevel thresholding approach is presented to perform image segmentation by exploiting the correlation among gray levels. The proposed method incorporates gray-level co-occurrence matrix (GLCM) and cuckoo search (CS) in order to effectively enhance the optimal multilevel thresholding of colored natural and satellite images exhibiting complex background and non-uniformities in illumination and features. The experimental results are presented in terms of mean square error (MSE), peak signal to noise ratio (PSNR), feature similarity index (FSIM), structural similarity index (SSIM), computational time (CPU time in seconds), and optimal threshold values for each primary color component at different thresholding levels for each of the test images. In addition, experiments are also conducted on the Berkeley Segmentation Dataset (BSDS300), and four performance indices of image segmentation Probability Rand Index (PRI), Variation of Information (VoI), Global Consistency Error (GCE), and Boundary Displacement Error (BDE) are tested. To evaluate the performance of proposed algorithm, other optimization algorithm such as artificial bee colony (ABC), bacterial foraging optimization (BFO), and firefly algorithm (FA) are compared using GLCM as an objective function. Moreover, to show the effectiveness of proposed method, the results are compared to existing context sensitive multilevel segmentation techniques based on Tsalli's entropy. Experimental results showed the superiority of proposed technique in terms of better segmentation results with increased number of thresholds. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据